Documentation

Please go to "Theme Options > Posts Slider Settings" in your admin panel and enter "Total slides" value.

Human health risk assessment of air emissions from development of unconventional natural gas resources

Air Pollution, Peer Reviewed

Abstract

BACKGROUND: Technological advances (e.g. directional drilling, hydraulic fracturing), have led to increases in unconventional natural gas development (NGD), raising questions about health impacts.
OBJECTIVES: We estimated health risks for exposures to air emissions from a NGD project in Garfield County, Colorado with the objective of supporting risk prevention recommendations in a health impact assessment (HIA).
METHODS: We used EPA guidance to estimate chronic and subchronic non-cancer hazard indices and cancer risks from exposure to hydrocarbons for two populations: (1) residents living >½ mile from wells and (2) residents living ≤ ½ mile from wells.
RESULTS: Residents living ≤ ½ mile from wells are at greater risk for health effects from NGD than are residents living >½ mile from wells. Subchronic exposures to air pollutants during well completion activities present the greatest potential for health effects. The subchronic non-cancer hazard index (HI) of 5 for residents ≤ ½ mile from wells was driven primarily by exposure to trimethylbenzenes, xylenes, and aliphatic hydrocarbons. Chronic HIs were 1 and 0.4. for residents ≤ ½ mile from wells and >½ mile from wells, respectively. Cumulative cancer risks were 10 in a million and 6 in a million for residents living ≤ ½ mile and >½ mile from wells, respectively, with benzene as the major contributor to the risk.
CONCLUSIONS: Risk assessment can be used in HIAs to direct health risk prevention strategies. Risk management approaches should focus on reducing exposures to emissions during well completions. These preliminary results indicate that health effects resulting from air emissions during unconventional NGD warrant further study. Prospective studies should focus on health effects associated with air pollution.
Copyright © 2012 Elsevier B.V. All rights reserved.

Click here for more information.


Potential contaminant pathways from hydraulically fractured shale to aquifers

Peer Reviewed, Water Contamination

Abstract

Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential for various forms of water pollution. Two potential pathways-advective transport through bulk media and preferential flow through fractures-could allow the transport of contaminants from the fractured shale to aquifers. There is substantial geologic evidence that natural vertical flow drives contaminants, mostly brine, to near the surface from deep evaporite sources. Interpretative modeling shows that advective transport could require up to tens of thousands of years to move contaminants to the surface, but also that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults or fracture zones, as found throughout the Marcellus shale region, could reduce the travel time further. Injection of up to 15,000,000 L of fluid into the shale generates high pressure at the well, which decreases with distance from the well and with time after injection as the fluid advects through the shale. The advection displaces native fluids, mostly brine, and fractures the bulk media widening existing fractures. Simulated pressure returns to pre-injection levels in about 300 d. The overall system requires from 3 to 6 years to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could allow advective transport to aquifers in less than 10 years. The rapid expansion of hydraulic fracturing requires that monitoring systems be employed to track the movement of contaminants and that gas wells have a reasonable offset from faults.
© 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

Click here for more information.


Missing from the table: role of the environmental public health community in governmental advisory commissions related to Marcellus Shale drilling.

Peer Reviewed, Public Health

Abstract

BACKGROUND: The Marcellus Shale is a vast natural gas field underlying parts of Pennsylvania, New York, West Virginia, Virginia, and Maryland. Rapid development of this field has been enabled by advances in hydrofracking techniques that include injection of chemical and physical agents deep underground. Response to public concern about potential adverse environmental and health impacts has led to the formation of state and national advisory committees.
OBJECTIVES: We review the extent to which advisory committees formed in 2011 by President Obama and governors of the states of Maryland and Pennsylvania contain individuals with expertise pertinent to human environmental public health. We also analyze the extent to which human health issues are of concern to the public by reviewing presentations at the public meeting of the Secretary of Energy Advisory Board (SEAB) Natural Gas Subcommittee formed by the U.S. President’s directive.Results: At a public hearing held by the SEAB Natural Gas Subcommittee 62.7% of those not in favor of drilling mentioned health issues. Although public health is specified to be a concern in the executive orders forming these three advisory committees, we could identify no individuals with health expertise among the 52 members of the Pennsylvania Governor’s Marcellus Shale Advisory Commission, the Maryland Marcellus Shale Safe Drilling Initiative Advisory Commission, or the SEAB Natural Gas Subcommittee.
CONCLUSIONS: Despite recognition of the environmental public health concerns related to drilling in the Marcellus Shale, neither state nor national advisory committees selected to respond to these concerns contained recognizable environmental public health expertise.

Click here for more information.


Resolution by the Medical Staff of the Bassett Healthcare Network Regarding Hydrofracking for Natural Gas

Statements/Resolutions

Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study

Air Pollution, Peer Reviewed

Abstract

The multispecies analysis of daily air samples collected at the NOAA Boulder Atmospheric Observatory (BAO) in Weld County in northeastern Colorado since 2007 shows highly correlated alkane enhancements caused by a regionally distributed mix of sources in the Denver-Julesburg Basin. To further characterize the emissions of methane and non-methane hydrocarbons (propane, n-butane, i-pentane, n-pentane and benzene) around BAO, a pilot study involving automobile-based surveys was carried out during the summer of 2008. A mix of venting emissions (leaks) of raw natural gas and flashing emissions from condensate storage tanks can explain the alkane ratios we observe in air masses impacted by oil and gas operations in northeastern Colorado. Using the WRAP Phase III inventory of total volatile organic compound (VOC) emissions from oil and gas exploration, production and processing, together with flashing and venting emission speciation profiles provided by State agencies or the oil and gas industry, we derive a range of bottom-up speciated emissions for Weld County in 2008. We use the observed ambient molar ratios and flashing and venting emissions data to calculate top-down scenarios for the amount of natural gas leaked to the atmosphere and the associated methane and non-methane emissions. Our analysis suggests that the emissions of the species we measured are most likely underestimated in current inventories and that the uncertainties attached to these estimates can be as high as a factor of two.

Click here for more information.


Statement from the Bassett Medical Center Board of Trustees

Statements/Resolutions

Charted Institute of Environmental Health Northern Ireland Hydraulic Fracturing:Impacts on the Environment and Human Health

Documentation, Public Health, Reports, Uncategorized

Click here to read report.


Impacts of gas drilling on human and animal health

Peer Reviewed, Public Health

Abstract

Environmental concerns surrounding drilling for gas are intense due to expansion of shale gas drilling operations. Controversy surrounding the impact of drilling on air and water quality has pitted industry and lease-holders against individuals and groups concerned with environmental protection and public health. Because animals often are exposed continually to air, soil, and groundwater and have more frequent reproductive cycles, animals can be used as sentinels to monitor impacts to human health. This study involved interviews with animal owners who live near gas drilling operations. The findings illustrate which aspects of the drilling process may lead to health problems and suggest modifications that would lessen but not eliminate impacts. Complete evidence regarding health impacts of gas drilling cannot be obtained due to incomplete testing and disclosure of chemicals, and nondisclosure agreements. Without rigorous scientific studies, the gas drilling boom sweeping the world will remain an uncontrolled health experiment on an enormous scale.

Click here for more information.


Air Pollution Exposure during Pregnancy, Ultrasound Measures of Fetal Growth, and Adverse Birth Outcomes: A Prospective Cohort Study

Air Pollution, Peer Reviewed

Abstract

BACKGROUND: Air pollution exposure during pregnancy might have trimester-specific effects on fetal growth.
OBJECTIVE: We prospectively evaluated the associations of maternal air pollution exposure with fetal growth characteristics and adverse birth outcomes in 7,772 subjects in the Netherlands.
METHODS: Particulate matter with an aerodynamic diameter < 10 μm (PM10) and nitrogen dioxide (NO2) levels were estimated using dispersion modeling at the home address. Fetal head circumference, length, and weight were estimated in each trimester by ultrasound. Information on birth outcomes was obtained from medical records.
RESULTS: In cross-sectional analyses, NO2 levels were inversely associated with fetal femur length in the second and third trimester, and PM10 and NO2 levels both were associated with smaller fetal head circumference in the third trimester [-0.18 mm, 95% confidence interval (CI): -0.24, -0.12 mm; and -0.12 mm, 95% CI: -0.17, -0.06 mm per 1-μg/m3 increase in PM10 and NO2, respectively]. Average PM10 and NO2 levels during pregnancy were not associated with head circumference and length at birth or neonatally, but were inversely associated with birth weight (-3.6 g, 95% CI: -6.7, -0.4 g; and -3.4 g, 95% CI: -6.2, -0.6 g, respectively). Longitudinal analyses showed similar patterns for head circumference and weight, but no associations with length. The third and fourth quartiles of PM10 exposure were associated with preterm birth [odds ratio (OR) = 1.40, 95% CI: 1.03, 1.89; and OR = 1.32; 95% CI: 0.96, 1.79, relative to the first quartile]. The third quartile of PM10 exposure, but not the fourth, was associated with small size for gestational age at birth (SGA) (OR = 1.38; 95% CI: 1.00, 1.90). No consistent associations were observed for NO2 levels and adverse birth outcomes.
CONCLUSIONS: Results suggest that maternal air pollution exposure is inversely associated with fetal growth during the second and third trimester and with weight at birth. PM10 exposure was positively associated with preterm birth and SGA.

Click here for more information.


Time-to-Event Analysis of Fine Particle Air Pollution and Preterm Birth: Results from North Carolina, 2001–2005

Air Pollution, Peer Reviewed

Abstract

Exposure to air pollution during pregnancy has been suggested to be a risk factor for preterm birth; however, epidemiologic evidence remains mixed and limited. The authors examined the association between ambient levels of particulate matter <2.5 μm in aerodynamic diameter (PM(2.5)) and the risk of preterm birth in North Carolina during the period 2001-2005. They estimated the risks of cumulative and lagged average exposures to PM(2.5) during pregnancy via a 2-stage discrete-time survival model. The authors also considered exposure metrics derived from 1) ambient concentrations measured by the Air Quality System (AQS) monitoring network and 2) concentrations predicted by statistically fusing AQS data with process-based numerical model output (the Statistically Fused Air and Deposition Surfaces (FSD) database). Using the AQS measurements, an interquartile-range (1.73 μg/m(3)) increase in cumulative PM(2.5) exposure was associated with a 6.8% (95% posterior interval: 0.5, 13.6) increase in the risk of preterm birth. Using the FSD-predicted levels and accounting for prediction error, the authors also found significant adverse associations between trimester 1, trimester 2, and cumulative PM(2.5) exposure and preterm birth. These findings suggest that exposure to ambient PM(2.5) during pregnancy is associated with increased risk of preterm birth, even in a region characterized by relatively good air quality.

Click here for more information.


Ambient Air Pollution Exposure and Full-Term Birth Weight in California

Air Pollution, Peer Reviewed

Abstract

BACKGROUND: Studies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births.
METHODS: We estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth.
RESULTS: 3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mother’s residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g) per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g) per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g) per pphm ozone, -7.7 g (-7.9 g, -6.6 g) per 10 microg/m3 particulate matter under 10 microm, -12.8 g (-14.3 g, -11.3 g) per 10 microg/m3 particulate matter under 2.5 microm, and -9.3 g (-10.7 g, -7.9 g) per 10 microg/m3 of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters.
CONCLUSIONS: This study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether a small shift in the population distribution of birth weight has broader health implications. However, the ubiquity of air pollution exposures, the responsiveness of pollutant levels to regulation, and the fact that the highest pollution levels in California are lower than those regularly experienced in other countries suggest that precautionary efforts to reduce pollutants may be beneficial for infant health from a population perspective.

Click here for more information.


Physicians, Scientists, and Engineers for Healthy Energy: Public Health Considerations of the Draft Supplemental Generic Environmental Impact Statement

Statements/Resolutions

Click here to read the statement.


CWA Health Care Coordinating Council resolution on hydrofracking

Reports, Worker Health

Click here to read this report.


EPA Groundwater Investigation: Pavillion, Wyoming

Reports, Water Contamination

Click here to access this report.


Burden of disease from environmental noise: Quantification of healthy life years lost in Europe

Public Health, Reports

Click here to access this report.


The Broome County and the Otsego County Medical Societies – Resolutions Regarding Gas Drilling and Hydrofracking

Statements/Resolutions

First & Second Annual Health Effects of Shale Gas Extraction Conference

Videos

Click here to access the video library.


Tompkins County Medical Society – Statement on Gas Drilling and Hydrofracking

Statements/Resolutions

Stress-pollution interactions: an emerging issue in children's health research

Children's Health, Peer Reviewed

Click here for more information.


Natural Gas Operations from a Public Health Perspective

Peer Reviewed

Abstract

The technology to recover natural gas depends on undisclosed types and amounts of toxic chemicals. A list of 944 products containing 632 chemicals used during natural gas operations was compiled. Literature searches were conducted to determine potential health effects of the 353 chemicals identified by Chemical Abstract Service (CAS) numbers. More than 75% of the chemicals could affect the skin, eyes, and other sensory organs, and the respiratory and gastrointestinal systems. Approximately 40–50% could affect the brain/nervous system, immune and cardiovascular systems, and the kidneys; 37% could affect the endocrine system; and 25% could cause cancer and mutations. These results indicate that many chemicals used during the fracturing and drilling stages of gas operations may have long-term health effects that are not immediately expressed. In addition, an example was provided of waste evaporation pit residuals that contained numerous chemicals on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Emergency Planning and Community Right-to-Know Act (EPCRA) lists of hazardous substances. The discussion highlights the difficulty of developing effective water quality monitoring programs. To protect public health we recommend full disclosure of the contents of all products, extensive air and water monitoring, coordinated environmental/human health studies, and regulation of fracturing under the U.S. Safe Drinking Water Act.

Click here for more information.