Foreword to the Fourth Edition

The *Compendium of Scientific, Medical, and Media Findings Demonstrating Risks and Harms of Fracking* (the Compendium) is a fully referenced compilation of the evidence outlining the risks and harms of fracking. Bringing together findings from the scientific and medical literature, government and industry reports, and journalistic investigation, it is a public, open-access document that is housed on the websites of Concerned Health Professionals of New York (www.concernedhealthny.org) and Physicians for Social Responsibility (www.psr.org).

The release of the first edition of the Compendium by Concerned Health Professionals of New York in July 2014 coincided with a meteoric rise in the publication of new scientific studies about the risks and impacts of fracking. Hence, a second edition was released five months later, in December 2014. This updated version included dozens of new studies that further explicated the recurrent problems, data gaps, and ongoing uncertainties that natural gas and oil extraction via hydraulic fracturing brings with it.

Almost concurrently, on December 17, 2014, the New York State Department of Health (NYS DOH) released its own long-awaited review of the health impacts of fracking. This 186-page document served as the foundation for a statewide ban on high-volume hydraulic fracturing (HVHF), announced by New York Governor Andrew Cuomo on the same day. The conclusions of the NYS DOH public health review largely aligned with our own. In the words of New York State Health Commissioner Dr. Howard Zucker, “[t] is clear from the existing literature and experience that HVHF activity has resulted in environmental impacts that are potentially adverse to public health. Until the science provides sufficient information to determine the level of risk to public health from HVHF and whether the risks can be adequately managed, HVHF should not proceed in New York State.” (See footnote 402.)

Released in October 2015, the third edition of the Compendium was compiled as a joint effort with Physicians for Social Responsibility and included more than 100 new peer-reviewed publications on the impacts of fracking. In addition, the third edition included the results of four multi-volume government reports on the impacts of fracking that had been issued in the United States: one from the U.S. Environmental Protection Agency that focuses on water; two from California that examine a wide array of impacts; and, from New York, the Department of Environmental Conservation’s Findings Statement that—together with the final environmental impact statement on fracking—implemented New York’s ban and incorporates the NYS DOH public health review into a larger analysis of the environmental and economic impacts of fracking. According to the Findings Statement, “Even with the implementation of an extensive suite of mitigation measures…the significant adverse public health and environmental impacts from allowing high-volume hydraulic fracturing to proceed under any scenario cannot be adequately avoided or minimized to the maximum extent practicable.…” (See footnote 294.)

Since its original release, the three earlier editions of the Compendium have been used and referenced all over the world. The Compendium has been twice translated into Spanish: independently in 2014 by a Madrid-based environmental coalition, followed by an official translation of the third edition, which was funded by the Heinrich Böll Foundation and launched at a press conference in Mexico City in May 2016. The Compendium has been used in the European Union, South Africa, the United Kingdom, Australia, Mexico, and South America.
This fourth edition of the Compendium is being finalized as a landmark United Nations climate treaty, the Paris Agreement, goes into force. Recognizing climate change as a grave threat to public health and safety, the Paris Agreement establishes as a key goal the need to limit global temperature increases to less than 2°C Celsius. As such, it articulates a new vision for energy by compelling nations to monitor their greenhouse gas emissions and set increasingly ambitious targets and timetables to reduce them. Under the treaty, concrete policy plans to achieve these objectives are left up to individual nation states. For its part, the United States, which ratified the Paris Agreement on September 3, 2016, has pledged to reduce its greenhouse gas emissions 26-28 percent by 2025, as compared to 2005 levels. Research published last September shows that our nation is on track to miss this target, in large part because of increasing emissions of methane, which is a powerful heat-trapping gas.\(^1\)\(^2\) As documented in a new federal inventory of greenhouse gases, methane leaks from U.S. oil and gas operations are higher than previously estimated, as are total U.S. methane emissions, which increased by more than 30 percent between 2002 and 2014.\(^3\) Indeed, as revealed by both satellite and ground observations, our nation’s methane emissions are responsible for 30-60 percent of the recent upsurge in global atmospheric methane concentrations. (See footnotes 608, 609). Most of this excess methane, as is revealed by a study published in September 2016 in the *Proceedings of the National Academy of Sciences*, represents fugitive emissions from U.S. oil and gas operations.\(^4\)\(^5\)\(^6\) These and other emerging data, described further in the pages that follow, indicate that fracking, an enabler of these trends, is incompatible with climate stability and the goal of rapid decarbonization that it requires.

This new iteration of the Compendium arrives on the heels of another major event that has put methane in the spotlight: the Aliso Canyon gas storage blowout in California. A key component of fracked gas infrastructure, Aliso Canyon is a 3,600-acre underground natural gas storage facility located within a mile of the affluent community of Porter Ranch, which sprang up after the gas storage field opened in 1972. The Aliso Canyon blowout that began on October 23, 2015 resulted in an uncontrolled leak that lasted for four months, released 100,000 tons of methane

and became the largest ever natural gas leak in U.S. history.7 The leak—so massive that its methane plume was visible from space by circling NASA satellites—prompted the evacuation and relocation of 8,300 households at a cost of $500 million. At this writing—a full year after the accident began—Aliso Canyon is still closed as its 114 wells are tested for integrity. Twenty-six wells have, so far, passed the required tests; the majority of wells are considered problematic and have been isolated.8 In October 2016, a federal task force issued a report containing 44 recommendations intended to prevent another Aliso Canyon-style disaster. Chief among them is a phase-out of “single point of failure” designs.9

Even as we compiled entries for this fourth edition, the authors of the Compendium continued to see evidence of, and appreciate, how young our knowledge base still is. As is revealed in the study citation database maintained by PSE Healthy Energy, more than 80 percent of all of the peer-reviewed literature that is relevant to assessing the environmental, socioeconomic, and public health impacts of shale and tight gas development has been published since January 2013. Indeed, nearly one-quarter of the now more than 900 available studies were published in the first nine months of 2016 alone.10 The vast majority of the literature reveals both potential and actual problems. Specifically, as demonstrated by PSE’s statistical analysis of the body of scientific literature available from 2009-2015—which, at the date of publication included 685 peer-reviewed papers—69 percent of original research studies on water quality found potential for, or actual evidence of, water contamination; 87 percent of original research studies on air quality found elevated air pollutant emissions; and 84 percent of original research studies on human health risks found signs of harm or indication of potential harm.11

As a response to this proliferating evidence of the risks and harms of fracking—augmented by increasing concern about the many uncertainties remaining—various countries, states, and municipalities have instituted bans and moratoria, with many prohibitions announced in 2015 and 2016 (although some local bans were subsequently rescinded by state or national governments).

France banned fracking in July 2011 and Bulgaria in January 2012. The state of Vermont banned fracking in May 2012. Following New York’s ban on high volume hydraulic fracturing in December 2014, Scotland became the first country in Great Britain to impose a formal moratorium on fracking, after an expert panel concluded that more study of fracking’s risks is

10 PSE Healthy Energy. http://www.psehealthyenergy.org/site/view/1180

needed. (In 2016, as part of the ongoing moratorium process, the government of Scotland released a series of reports that reconfirmed the evidence for potential contamination of air and water, threats to worker health from silica dust exposure, risks to the health of nearby residents, and further noted that the pursuit of unconventional oil and gas extraction would make more difficult Scotland’s goal of meeting its climate targets on greenhouse gas emissions.\(^\text{12, 13}\) Wales followed in February 2015 when its government declared a moratorium on fracking “until it is proven safe.” The Canadian province of New Brunswick declared a moratorium for similar reasons in March 2015. In May 2015, the state of Maryland overwhelmingly passed a two-and-a-half-year moratorium, largely based on concerns about health impacts. In June 2015, citing concerns about noise impacts and the industrialization of rural landscape, the county of Lancashire in northwest England halted plans for what would have been a major British fracking operation; years previously, two wells—the first and only pair ever drilled in Lancashire—had suffered well integrity failures and caused earthquakes. However, in October 2016, the national government overturned Lancashire’s ban. Similarly, a fracking ban passed by the city of Denton, Texas in November 2014 was invalidated in June 2015 by a new state law, pushed by the oil and gas industry, that prohibits Texas municipalities from passing local bans. In July 2015, the Dutch government banned all shale gas fracking until 2020 on the grounds that “research shows that there is uncertainty” about impacts. In September 2015, Northern Ireland and the Spanish region of Castile La Mancha both effectively halted fracking via planning policies.

In a December 2015 vote in favor of a report, *Towards a European Energy Union*, the plenary of the European Parliament affirmed the incompatibility of shale gas extraction via hydraulic fracturing with the European Union’s commitment to decarbonization and acknowledged public concerns about the environmental and health impacts of fracking. Falling short of an outright EU-wide moratorium on fracking, the report states that “it is questionable whether hydraulic fracturing can be a viable technology in the European Union.”\(^\text{14}\)

In Florida, 32 counties and 48 cities have either banned fracking outright or passed resolutions opposing it. In March 2016, a bill that would have pre-empted local bans and opened the state to fracking was voted down in a Florida legislative committee. Conversely, in May, the Colorado Supreme Court struck down local fracking bans in the cities of Fort Collins and Longmont. Also, in May, New Brunswick extended its moratorium on fracking “indefinitely,” citing unresolved problems with the disposal of fracking wastewater, and in the Canadian province of Newfoundland and Labrador, where a moratorium has been in place since 2013, a government-appointed panel recommended that fracking remain “paused,” citing data gaps and unresolved questions about the underlying geology. In June, Germany adopted a moratorium on “unconventional fracking” until 2021 but will permit exploratory drilling research projects. Also in June, Butte County, California banned fracking, and, in July, Alameda County became the fifth county in California to ban fracking. (Santa Cruz, San Benito, and Mendocino counties, 12 Health Protection Scotland. (2016, November). *A health impact assessment of unconventional oil and gas in Scotland*, vol. 1. Retrieved from http://www.hps.scot.nhs.uk/resourcedocument.aspx?resourceid=3102
banned fracking in 2014.) In August, the Australian state of Victoria declared a permanent ban on fracking on the grounds that the risks outweigh any potential benefits. In September, a California judge, arguing that the agency had failed to consider the dangers of fracking, struck down a bid by the U.S. Bureau of Land Management to open one million acres of public land in central California for oil drilling. Four counties in Ohio (Medina, Portage, Athens, and Meigs) gathered signatures sufficient for ballot initiatives in November that would have banned fracking, fracking waste disposal, and associated infrastructure, including a major pipeline. However, Ohio Secretary of State Jon Husted struck the measures from the ballot on technical grounds. Also by ballot in November, Monterey County became the sixth county in California to ban fracking, along with all new oil drilling. Monterey’s 1,200 existing oil wells will remain in operation.

In sum, as evidence of the environmental and public health costs accumulate, legislative bodies are increasingly apprehensive about fracking.

Introduction

Over the past decade, directional drilling has been combined with high-volume hydraulic fracturing and clustered multi-well pads as novel technologies for extracting dispersed oil and natural gas, primarily from shale formations. As this unconventional extraction method (collectively known as “fracking”) has pushed into more densely populated areas of the United States, as fracking operations have increased in frequency and intensity, and, as the transport of extracted materials has expanded, a significant body of evidence has emerged to demonstrate that these activities are dangerous to people and their communities in ways that are difficult—and may prove impossible—to mitigate. Risks include earthquakes and adverse impacts on water, air, agriculture, public health and safety, property values, climate stability, and economic vitality.

Researching these complex, large-scale industrialized activities—and the ancillary infrastructure that supports them—takes time and has been hindered by institutional secrecy. Nonetheless, research is gradually catching up to the last decade’s surge in unconventional oil and gas extraction from shale. A growing body of peer-reviewed studies, accident reports, and investigative articles has detailed specific, quantifiable evidence of harm and has revealed fundamental problems with the entire life cycle of operations associated with unconventional drilling and fracking. Industry studies, as well as independent analyses, indicate inherent engineering problems including uncontrolled and unpredictable fracturing, induced seismicity, extensive methane leakage, and well casing and cement impairments that cannot be prevented with currently available materials and technologies.

Earlier scientific predictions and anecdotal evidence are now bolstered by empirical data, confirming that the public health risks from unconventional gas and oil extraction are real, the range of adverse environmental impacts wide, and the negative economic consequences considerable. Our examination of the peer-reviewed medical and public health literature uncovered no evidence that fracking can be practiced in a manner that does not threaten human health.
Despite this emerging body of knowledge, industry secrecy and government inaction continue to thwart scientific inquiry, leaving many potential problems—especially cumulative, long-term risks—unidentified, unmonitored, and largely unexplored. This problem is compounded by nondisclosure agreements, sealed court records, and legal settlements that prevent families and their doctors from discussing injuries and illness. As a result, no quantitative and comprehensive inventory of human hazards yet exists.

The long-entrenched problem of secrecy shows no sign of resolving. The identity of chemicals used in fracking fluids remains proprietary and lies beyond the reach of federal right-to-know legislation that govern other industries. The nation’s largest public database on chemicals used in fracking operations, FracFocus, operates on a voluntary basis, and, while 23 states have adopted it to serve as a *de facto* chemical disclosure registry, its data, over time, become increasingly less, rather than more, comprehensive and transparent. As documented in a 2016 study by a Harvard University team, rates of withheld information and claims of trade secrecy have increased since Fracfocus was first launched in 2011. (See footnotes 882, 883.)

The incomplete picture created by lack of transparency notwithstanding, the evidence to date indicates that fracking operations pose severe threats to health, both from water contamination and from air pollution. In the United States, more than two billion gallons of fluid are injected daily under high pressure into the earth with the purpose of enabling oil and gas extraction via fracking or, after the fracking is finished, to flush the extracted wastewater down any of the 187,570 disposal wells across the country that accept oil and gas waste. All of those two billion daily gallons of fluid is toxic, and it all passes through our nation’s groundwater aquifers on its way to the deep geological strata below where it demonstrably raises the risk for earthquakes. In the air around drilling and fracking operations and their attendant infrastructure, researchers have measured strikingly high levels of toxic pollutants, including the potent carcinogen benzene and the chemical precursors of ground-level ozone (smog). In some cases, concentrations of fracking-related air pollutants in communities where people live and work exceed federal safety standards. Research shows that air emissions from fracking can drift and pollute the air hundreds of miles downwind. (See footnotes 77, 79.)

About one-third of the natural gas inventory in the United States is used to generate electricity, and, enabled by fracking, natural gas has, as of 2016, exceeded coal as the nation’s leading source of electricity and has now exceeded the emissions of carbon dioxide from coal.\(^{15}\) With hydraulically fractured wells now producing more than two-thirds of U.S. natural gas and half of U.S. crude oil, fracking’s “unconventional” techniques can no longer be considered atypical nor can the question of their public health risks be considered inconsequential.\(^{16}\) Drilling and fracking operations and their ancillary infrastructure have profoundly altered Earth’s landscape. The flare stacks and artificial lights from major shale plays are visible from space,\(^{17}\) as is the upward buckling of Earth’s surface that is caused by the high-pressure injection of fracking

waste water into disposal wells, a practice that has been linked to earthquakes.\(^{18}\) With at least 15 million Americans already living within a mile of a fracking well that has been drilled since 2000, and with 8.6 million people served by a drinking water source that is located within a mile from an unconventional well, understanding the potential for exposure and accompanying adverse impacts is a fundamental public health necessity. (See footnote 176.)

About this Report

The Compendium is a fully referenced compilation of the significant body of scientific, medical, and journalistic findings demonstrating risks and harms of fracking. Organized to be accessible to public officials, researchers, journalists, and the public at large, the Compendium succinctly summarizes key studies and other findings relevant to the ongoing public debate about unconventional methods of oil and gas extraction. The Compendium should be used by readers to grasp the scope of the information about both public health and safety concerns and the economic realities of fracking that frame these concerns. The reader who wants to delve deeper can consult the reviews, studies, and articles referenced. In addition, the Compendium is complemented by a fully searchable, near-exhaustive citation database of peer-reviewed journal articles pertaining to shale gas and oil extraction that was developed by PSE Healthy Energy and which is housed on its website (http://www.psehealthyenergy.org/site/view/1180).

For this fourth edition of the Compendium, as before, we collected and compiled findings from three sources: articles from peer-reviewed medical or scientific journals; investigative reports by journalists; and reports from, or commissioned by, government agencies. Peer-reviewed articles were identified through databases such as PubMed and Web of Science, and from within the PSE Health Energy database. We included review articles when such reviews revealed new understanding of the evidence. Our entries briefly describe studies that documented harm or risk of harm associated with fracking, summarizing the principal findings. Entries do not include detailed results or a critique of the strengths and weaknesses of each study. Because much of medicine’s early understanding of new diseases and previously unsuspected epidemiological correlations comes through assessment of case reports, we have included published case reports and anecdotal reports when they are data-based and verifiable. The studies and investigations referenced in the dated entries catalogued in Compilation of Studies & Findings are current through mid-July 2016. Some just-published papers are described above and also below in Emerging Trends. Hence, the footnoted citations here in the front matter represent studies and articles that are not referenced in the Compendium itself or which appeared “as we go to press,” that is, after our mid-July cut-off date for inclusion as an entry.

Within the compiled entries, we have also provided references to articles appearing in the popular press that described the findings of the corresponding peer-reviewed study. For this purpose, we sought out articles in the popular literature that expertly and plainly reported on studies that were highly technical, especially if those articles included comments by principal investigators on the significance of their findings. In such cases, footnotes for the peer-reviewed

study and the matching popular article appear together in one entry. We hope these tandem references will make the findings more accessible to lay readers. Acronyms are spelled out the first time they appear in each section.

News articles appearing as individual entries signify investigative reports by journalists conducting original research. While advocacy organizations have compiled many useful reports on the impacts of fracking, these generally do not appear in our Compendium. We also excluded papers that focused purely on methodologies or instrumentation. For some sources, cross-referenced footnotes are provided, as when wide-ranging government reports or peer-reviewed papers straddled two or more topics.

This fourth edition of the Compendium continues to exist within a moving stream of data. The number of peer-reviewed publications on the impacts of fracking doubled between 2011 and 2012 and then doubled again between 2012 and 2013. More studies were published in 2014 than in 2009, 2010, 2011, and 2012 combined. The number of studies published in 2015 surpassed those published in 2014 by ten percent.19 Of the more than 200 peer-reviewed studies published thus far in 2016, 44 constitute original research on health, water quality, and air quality.

In our review of the data, seventeen compelling themes emerged; these serve as the organizational structure of the Compendium. The document opens with sections on two of the most acute threats—air pollution and water contamination—and ends with medical and scientific calls for more study and transparency. Readers will notice the ongoing upsurge in reported problems and health impacts, making each section top-heavy with recent data. In accordance, the Compendium is organized in reverse chronological order within sections, with the most recent information first.

The Compendium focuses on topics most closely related to the public health and safety impacts of unconventional gas and oil drilling and fracking. Additional risks and harms arise from associated infrastructure and industrial activities that necessarily accompany drilling and fracking operations. A detailed accounting of all these ancillary impacts is beyond the scope of this document. Nevertheless, beginning with the third edition, we included a section on infrastructure that focuses on compressor stations, pipelines, wastewater recycling facilities, and silica sand mining operations as emerging issues of concern. In this fourth edition, health risks from infrastructure are explored in even greater depth, and, in light of the ongoing Aliso Canyon disaster, have been expanded to include risks from gas storage. Many other relevant concerns—namely, oil trains, cryogenic and liquefaction facilities, processing and fractionation complexes, import/export terminals—are not included here. We hope to take up these issues in future editions. Similarly, this edition of the Compendium does not examine the harms and risks posed by other forms of unconventional oil and gas extraction, such as matrix acidizing (which releases oil and gas by dissolving rock with strong acids), cyclic steaming (which uses pressurized, superheated water to release oil), microwave extraction (which points microwave beams into shale formations to liquefy oil), and artificial lift (which uses gasses, chemicals, or pumps to extract natural gas).

Given the rapidly expanding body of evidence related to the harms and risks of unconventional oil and gas extraction, we plan to continue revising and updating the Compendium approximately every year. It is a living document, housed on the websites of Concerned Health Professionals of New York and Physicians for Social Responsibility, which serves as an educational tool in important ongoing public and policy dialogues.

The Compendium is generally a volunteer project and has no dedicated funding; it was written utilizing the benefit of the experience and expertise of numerous health professionals and scientists who have been involved in this issue for years.

We thank our external readers for their comments and suggestions: Casey Crandall, Barbara Gottlieb, Robert Gould, MD; Jake Hays, MA; Lee Ann Hill, MPH; Robert Howarth, PhD; Anthony Ingraffea, PhD, PE; Adam Law, MD; Ryan Miller, Pouné Saberi, MD, MPH; Seth Schonkoff, PhD, MPH.

We welcome your feedback and comments.

Sheila Bushkin-Bedient, MD, MPH
Concerned Health Professionals of New York

Larysa Dyrszka, MD
Concerned Health Professionals of New York, Physicians for Social Responsibility - New York

Yuri Gorby, PhD
Concerned Health Professionals of New York

Mary Menapace, RN
Concerned Health Professionals of New York

Kathleen Nolan, MD, MSL
Concerned Health Professionals of New York, Physicians for Social Responsibility - New York

Carmi Orenstein, MPH
Concerned Health Professionals of New York

Barton Schoenfeld, MD, FACC
Concerned Health Professionals of New York, Physicians for Social Responsibility - New York

Sandra Steingraber, PhD
Concerned Health Professionals of New York

About Concerned Health Professionals of New York

Concerned Health Professionals of New York (CHPNY) is an initiative by health professionals, scientists, and medical organizations for raising science-based concerns about the impacts of fracking on public health and safety. CHPNY provides educational resources and works to ensure that careful consideration of the science and health impacts are at the forefront of the fracking debate. http://concernedhealthny.org

About Physicians for Social Responsibility

Working for more than 50 years to create a healthy, just, and peaceful world for both present and future generations, Physicians for Social Responsibility (PSR) uses medical and public health expertise to educate and advocate on urgent issues that threaten human health and survival, with the goals of reversing the trajectory towards climate change, protecting the public and the environment from toxic chemicals, and addressing the health consequences of fossil fuels. PSR was founded by physicians concerned about nuclear weapons, and the abolition of nuclear weapons remains central to its mission.

Contents

- Foreword to the Fourth Edition... 2
- Introduction... 6
- About this Report... 8
- About Concerned Health Professionals of New York.......................... 11
- About Physicians for Social Responsibility... 11
- Emerging Trends.. 12
- Compilation of Studies & Findings... 22
 - Air pollution... 22
 - Water contamination.. 37
 - Inherent engineering problems that worsen with time...................... 69
 - Radioactive releases.. 74
 - Occupational health and safety hazards... 80
 - Public health effects, measured directly.. 92
 - Noise pollution, light pollution, and stress.. 101
 - Earthquakes and seismic activity.. 104
 - Abandoned and active oil and natural gas wells as pathways for gas and fluid migration .. 121
 - Flood risks... 128
 - Threats to agriculture and soil quality.. 131
 - Threats to the climate system.. 137
 - Threats from fracking infrastructure.. 154
 - Inaccurate jobs claims, increased crime rates, threats to property value and mortgages, and local government burden ... 176
 - Inflated estimates of oil and gas reserves and profitability............... 191
 - Disclosure of serious risks to investors... 196
 - Medical and scientific calls for more study and more transparency...... 198
- Conclusion.. 209
*Note that for the purposes of this compendium, the terms “fracking” and “drilling and fracking” refer to the entire unconventional oil and gas extraction and distribution process, from well site preparation to transport, distribution, and waste disposal and all associated infrastructure, including pipelines and compressor stations. Not every aspect of this process is fully addressed in the Compendium.

Emerging Trends

1) **Growing evidence shows that regulations are simply not capable of preventing harm.** Studies reveal inherent problems in the natural gas extraction process, such as well integrity failures caused by aging or the pressures of fracking itself, and in the waste disposal process. These issues can lead to water contamination, air pollution with carcinogens and other toxic chemicals, earthquakes, and a range of environmental and other stressors wrought on communities. Some of fracking’s many component parts—which include the subterranean geological landscape itself—are simply not controllable. Compounding the problem, the number of wells and their attendant infrastructure continue to proliferate, creating burgeoning cumulative impacts.

The injection of extreme volumes of fluids—now typically three to five million gallons or more per well—create significant deformations in the shale that are translated upwards, a mile or more, to the surface. Along the way, these “pressure bulbs” can impact in unpredictable ways faults and fissures in the overlying rock strata, including strata that intersect fresh water aquifers. Such pressure waves may mobilize contaminants left over from previous drilling and mining activities. (See footnotes 188, 189.) No set of regulations can obviate these potential impacts to groundwater. The state of California determined that fracking can have “significant and unavoidable” impacts on air quality, including driving pollutants above levels that violate air quality standards. (See footnote 70.) Similarly in northeastern Colorado, ambient levels of atmospheric hydrocarbons continued to increase even with tighter emission standards. (See footnote 83.) Well sites leak far more methane and toxic vapors than previously understood, they continue to leak long after they are decommissioned and abandoned, and the leakage rate is wildly variable, with four percent of wells nationwide responsible for fully half of all drilling and fracking-related methane emissions. Predicting which wells will become superemitters is not possible, according to a 2016 survey of 8,000 wells using helicopters and infrared cameras. Further, much of this leakage is engineered into the design, as when vapors are vented through release valves in order to regulate pressure. (See footnotes 604, 605.) Similarly, no set of regulations can eliminate earthquake risks. In the words of a recent article in *Texas Journal of Oil, Gas, and Energy Law*, “earthquakes sometimes occur when subsurface formations are properly fractured…. [T]he risk of earthquake damage is not substantially mitigated by the exercise of due care when fracking fluids are injected into the ground.” (See footnote 438.)

2) **Fracking threatens drinking water.** Cases of drinking water sources contaminated by drilling and fracking activities, as well as associated waste disposal, are now proven. The U.S. Environmental Protection Agency’s (EPA) draft assessment of fracking’s impacts on drinking water resources confirmed specific instances of water contamination caused by drilling and fracking-related activities and identified the various pathways by which this contamination has occurred. According to the EPA, documented cases of drinking water contamination have resulted from spills of fracking fluid and fracking wastewater; discharge of fracking waste into
rivers and streams; and underground migration of fracking chemicals, including gas, into drinking water wells. In August 2016, a scientific advisory panel to the EPA further underscored these findings by challenging a misleading statement in the press release accompanying this draft report that claimed, despite multiple lines of evidence explicated in the report itself, that impacts on drinking water were neither “systemic” nor “widespread.”

Independently, researchers working in Texas found 19 different fracking-related contaminants—including cancer-causing benzene—in hundreds of drinking water samples collected from the aquifer overlying the heavily drilled Barnett Shale, thereby documenting widespread water contamination. In Pennsylvania, a solvent used in fracking fluid was found in drinking water wells near drilling and fracking operations known to have well casing problems. In California, state regulators admitted that they had mistakenly allowed oil companies to inject drilling wastewater into aquifers containing clean, potable water. (See footnotes 170, 174, 178.)

3) Drilling and fracking emissions contribute to toxic air pollution and smog (ground-level ozone) at levels known to have health impacts. In Colorado’s heavily drilled Front Range, new research shows that volatile organic compounds from drilling and fracking operations are responsible for 17 percent of locally produced ozone. (See footnote 57.) Colorado has exceeded federal ozone limits for the past decade, a period that corresponds to a boom in oil and gas drilling. Living near drilling and fracking operations significantly increases asthma attacks for residents of Pennsylvania, according to a new Johns Hopkins University study of 35,000 medical records. Those who lived near a higher number of active gas wells were 1.5 to 4 times more likely to suffer from asthma attacks compared to those who live farther away, with the closest group having the highest risk. (See footnotes 384, 385.) The New York State Department of Environmental Conservation determined that fracking could increase ozone levels in downwind areas of the state, potentially impacting the ability to maintain air quality that meets ozone standards. (See footnote 294.) Two independent reports from California determined that fracking occurs disproportionately in areas already suffering from serious air quality problems and can drive ozone and other federally regulated air pollutants to levels that violate air quality standards. (See footnotes 69, 70.) This increased air pollution and smog formation poses a serious risk to all those already suffering from respiratory issues, such as children with asthma. With an average of 203 high-ozone days a year, intensely fracked Kern County, California, is the fifth-most ozone-polluted county in the nation, according to the American Lung Association. Several studies this year have documented a sharp uptick in atmospheric ethane attributable to emissions from oil and gas wells. This trend reverses a previous, decades-long decline; if this rate continues, U.S. ethane levels are expected to hit 1970s levels in about three years. Ethane is a potent precursor to ground-level ozone.
4) Public health problems associated with drilling and fracking, including reproductive impacts and occupational health and safety problems, are increasingly well documented.

Among residents living near drilling and fracking operations, documented adverse health indicators variously include exacerbation of asthma, as describe above, and increased rates of hospitalization, ambulance runs, emergency room visits, self-reported respiratory problems and rashes, motor vehicle fatalities, trauma, and drug abuse. A study published in August 2016 by Johns Hopkins University researchers demonstrated that Pennsylvania residents with the highest exposure to active fracked gas wells were nearly twice as likely to experience a combination of migraine headaches, chronic nasal and sinus symptoms, and severe fatigue.23 As is documented in a set of studies published in September, an emerging body of evidence shows harm to reproductive health from exposure to oil and gas operations, at least some of which may be linked to the dozens of known endocrine-disrupting chemicals used in hydraulic fracturing.24, 25 Earlier studies have shown associations with infant deaths, high-risk pregnancies, and low birthweight. A 2015 study found a 40 percent increase in the risk of preterm birth among infants born to mothers who live nearby active drilling and fracking sites in Pennsylvania. (See footnote 389.) As we go to press, a Yale University research team reports that carcinogens involved in fracking operations have the potential to contaminate both air and water in nearby communities in ways that may increase the risk of childhood leukemia. The team identified 55 known or possible carcinogens that may be released into air and water from fracking operations. Of these, 20 are linked to leukemia or lymphoma.26, 27

Among workers, risks include both toxic exposures and accidents. Benzene has been detected in the urine of wellpad workers in Colorado and Wyoming. The National Institute for Occupational Safety and Health named oil and gas extraction industry workers among those at risk for silicosis, an incurable lung disease caused by exposure to silica dust, from the silica sand that is used extensively in fracking operations. Fatality rates among workers in the oil and gas extraction sector in North Dakota were seven times the national fatality rates in this industry, which itself has more deaths from fires and explosions than any other private industry. An increase in workplace deaths has accompanied the fracking boom in West Virginia. Nationwide, the number of fatal work injuries in oil and gas extraction industries reached a new high in 2014, according to the most recent analysis from the Bureau of Labor Statistics.

5) Natural gas is a bigger threat to the climate than previously believed. Methane is a much more potent greenhouse gas than formerly appreciated. The Intergovernmental Panel on Climate

Change now estimates that, over a 20-year time frame, methane can, pound for pound, trap 86 times more heat than carbon dioxide and is 34 times more potent a greenhouse gas over a 100 year period. (See footnote 655.) Further, real-world leakage rates greatly exceed earlier estimates. In the heavily drilled Barnett Shale of northeastern Texas, methane emissions were shown to be 50 percent higher than the EPA had estimated. Fracking operations and associated infrastructure contribute 71 to 85 percent of the methane emissions in the region. Researchers discovered that much of these emissions originated not from accidental leaks but from losses that are inherent to the design of the machinery or to normal operating use and are, therefore, not possible to mitigate. (See footnotes 713, 714.) Methane leakage at the levels now being documented (by multiple approaches in measurement and modeling) negates and outweighs previously hypothesized benefits from burning methane instead of coal in most existing power plants and, more profoundly, makes the urgent task of limiting global warming to below levels called for in the Paris climate agreement increasingly difficult. As we go to press, a new discussion paper in Earth System Dynamics reports that “the growth rate of climate forcing due to human-caused greenhouse gases increased over 20% in the past decade mainly due to resurging growth of atmospheric CH₄ [methane].”²⁸ Published almost simultaneously, a new inventory of worldwide methane emissions from various sources finds that methane emissions from the fossil fuel industry are 20-60 percent higher than previously thought.²⁹ This discovery, based on isotopic fingerprinting of methane sources, has prompted researchers to call for revisions to current climate prediction models and for a renewed emphasis on reducing methane emissions as a necessary tool for combating climate change.³⁰

6) Earthquakes are a consequence of drilling and fracking-related activities in many locations. Several major studies now confirm a causal link between the injection of fracking wastewater in disposal wells and earthquake swarms. A new study using satellite-based radar imagery provides proof that the migration of fracking wastewater into faults increased pressures in ways that triggered a 4.8 magnitude earthquake in east Texas in 2012, while another documents the rupture of a fault plane that set off a 4.9 magnitude earthquake in Kansas in 2014 immediately following a rapid increase in fracking wastewater injection nearby.³¹,³² The number of earthquakes of magnitude 3.0 or higher has skyrocketed in Oklahoma since the advent of the fracking boom, with fewer than two per year before 2009 and more than 900 in 2015 alone. In 2016, the frequency of seismic events in Oklahoma declined (with 580 earthquakes at this writing), but the size of individual events is increasing. Thus far in 2016, Oklahoma has

experienced three earthquakes of magnitude 5.0 or higher.33 The 5.8 earthquake that struck near Pawnee on September 3, 2016 was the strongest in Oklahoma’s history.34 Felt by residents in five states, the Pawnee quake prompted a state of emergency declaration and an order from state regulators to shut down 67 wastewater disposal wells in the area.35 As we go to press, the EPA has recommended a moratorium on the underground injection of fracking wastewater in certain earthquake-prone parts of Oklahoma because regulations have not worked to solve the problem.36 On November 6, 2013, a magnitude 5.0 earthquake struck Cushing, Oklahoma near the site of the nation’s largest oil hub, where 60 million barrels of crude oil are stored. The quake injured one, damaged more than 40 buildings, closed a school, and triggered evacuations. Oil infrastructure was not damaged.37 Recent evidence shows that the process of fracking itself can trigger small earthquakes, as several confirmed cases demonstrate. (See footnotes 432-438.)

7) Fracking infrastructure poses serious potential exposure risks to those living near it.

Drilling and fracking activities are temporary operations, but compressor stations are semi-permanent facilities that pollute the air 24 hours a day as long as gas is flowing through the pipeline. Day-to-day emissions from compressor stations are highly episodic and can create periods of potentially extreme exposures. In a similar way, flare stacks at drilling and fracking sites can contribute significantly to hazardous air pollution. Emissions from flare stacks typically include carbon monoxide, nitrogen oxides, benzene, formaldehyde and xylene, but levels of these smog-forming compounds are seldom measured directly.38 In October 2016, the EPA acknowledged that its 33-year-old formula for estimating emissions from flaring operations requires revision as it may significantly underestimate levels of health-damaging air pollutants.39 In the Upper Midwest, Wisconsin residents living near silica sand mining operations that service the fracking industry reported dust exposure and respiratory problems. Silica dust is a known cause of silicosis and lung cancer.

Fracking infrastructure in the United States also includes 400 underground gas storage facilities in 31 states, with scant federal oversight and aging equipment. The recent four-month leak at the fifth largest facility, Aliso Canyon in California, resulted in an uncontrollable array of chemical exposures to a large suburban population and became the worst methane leak in U.S. history. A major pollution source even before the October 2015 blow-out, Aliso Canyon exposed residents in the region to benzene spikes, high ongoing odorant releases, hydrogen sulfide at levels far

above average urban levels, and many other contaminants of concern. Residents reported symptoms including headaches, nosebleeds, eye irritation, and nausea. Thousands were evacuated, and contaminated house dust became a contentious issue. Measurements of airborne contaminants during the leak were intermittent and contain major gaps. The community still awaits the initiation of a mandated health study, which, independent researchers say, must include attention to sub-chronic, cumulative exposures. (See footnotes 733-766.)

8) **Drilling and fracking activities can bring naturally occurring radioactive materials to the surface.** Exposure to increased radiation levels from fracking materials is a risk both for workers and for residents. A study demonstrated that radon levels in Pennsylvania homes rose since the advent of the fracking boom, and buildings in heavily drilled areas had significantly higher radon readings than areas without well pads—a difference that did not exist before 2004. University of Iowa researchers documented a variety of radioactive substances including radium, thorium, and uranium in fracking wastewater and determined that their radioactivity increased over time; they warned that radioactive decay products can potentially contaminate recreational, agricultural, and residential areas. The New York State DEC’s Findings Statement noted that naturally occurring radioactive materials (NORM) are brought to the surface “in the cuttings, flowback water and production brine. . . . [T]he build-up of NORM in pipes and equipment has the potential to cause a significant adverse impact because it could expose workers handling pipes, for cleaning or maintenance, to increased radiation levels.” (See footnotes 294, 306-329.)

9) **The risks posed by fracking in California are unique.** One in every eight Americans lives in California, and hydraulic fracturing in California is practiced differently than in other states, making its risks different, as well. California is the only state that allows fracking waste to be held in unlined, open pits, which creates risks for both air and groundwater contamination. Wells are more likely to be vertical rather than horizontal, and the oil-containing rock layer is shallower. Hence, much less water is used per well for fracking as compared to other states. However, the fracking fluid used is much more chemically concentrated, the fracking zones are located closer to overlying aquifers, and the risk of a fracture reaching groundwater is higher. Most new fracking operations in California take place in areas with a long history of oil extraction, most notably in San Joaquin Valley within Kern County. A high density of old and abandoned wells in that area provides potential leakage pathways, should fractures intersect with them. And although fracking requires considerably less water per well in California, it takes place disproportionately in areas of severe water shortages and can compete with municipal and agricultural needs for freshwater. (See footnote 69.)

Fracking in California is concentrated in two areas, both of which face unique potential risks to human health. One, Kern County, serves as a top producer of the nation’s food crops, yet it hosts the highest density of drilling and fracking operations in the state. These factors project fracking’s impacts onto geographically distant populations, especially in cases when wastewater is diverted for use in crop irrigation and livestock watering. The other area in California where fracking is concentrated, the Los Angeles Basin, is located directly under one of the most populous cities in the world. About 1.7 million people in Los Angeles live or work within one mile of an active oil or gas well. California does not currently limit how close drilling and fracking operations can be from residences or schools.

In 2014, the discovery that companies had, for years, been wrongly allowed to inject fracking waste directly into California’s freshwater aquifers—including some used as drinking water
sources—led to the closing of 56 disposal wells. (Astonishingly, state and federal regulators are now considering whether to expand California’s aquifer exemption program that legalizes the dumping of oil and gas waste into groundwater reserves.40) The combination of ongoing drought and lack of disposal options has resulted in the diversion of fracking wastewater to farmers for irrigation of crops, raising concerns about contaminated water potentially affecting food crops and draining into groundwater. Investigative reports in 2015 revealed that Chevron Corporation piped 21 million gallons of recycled oil and gas wastewater per day to farmers for crop irrigation. Tests showed the presence of several volatile organic compounds, including acetone, which is linked, in lab studies, to kidney, liver, and nerve damage. (See footnotes 569-571.)

Food is a troubling possible exposure route to fracking chemicals, about which little is known. As we go to press, a research team from Lawrence Berkeley National Laboratory, University of California Berkeley, and University of the Pacific released preliminary results from a first-ever hazard assessment of chemicals used in California oil drilling operations that reuse wastewater for livestock watering and other agricultural purposes in the San Joaquin Valley. This evaluation, compiled as a technical report by PSE Healthy Energy and Lawrence Berkeley National Laboratory, revealed that more than one-third of the 173 chemicals used are classified as trade secret and their identities are therefore unknown. Of the remainder, ten are classified as either carcinogenic or possibly carcinogenic in humans, 22 are classified by the state of California as toxic air contaminants, and 14 had no ecotoxicity or mammalian toxicity data available. “It is difficult or impossible to estimate risks to consumers, farmworkers or the environment,” the authors concluded, “when identification of chemical additives remains in trade secret form and/or lacks toxicity and environmental profile information.” (See footnotes 565-588.)

10) The economic instabilities of fracking further exacerbate public health risks. Real-life challenges to the industry’s arguments that fracking is good business are becoming more apparent. Independent economic analyses show that the promise of job creation has been greatly hyped, with many jobs going to out-of-area workers. With the arrival of drilling and fracking operations, communities have experienced steep increases in rates of crime, including sex trafficking, sexual assault, drunk driving, drug abuse, and violent victimization—all of which carry public health consequences, especially for women. Social costs include strain on law enforcement, municipal services, and road damage. Economic analyses have found that drilling and fracking threaten property values and can diminish tax revenues for local governments. Additionally, drilling and fracking pose an inherent conflict with mortgages and property insurance due to the hazardous materials used and the associated risks.

In the past year, the tempo of drilling and fracking operations in the United States has fluctuated markedly. In March 2016, the number of working gas rigs fell to its lowest level since record-

keeping began in 1987.42 Although oversupply and plunging oil and gas prices have dramatically slowed the shale boom, this recent downturn has not always translated into less risk and exposure to harm for those living in frontline communities. For example, even as the pace of drilling slowed nationwide in 2015, injections of fracking wastewater increased in Ohio by 15 percent. In an interview with the \textit{Columbus Dispatch}, an industry spokesperson said that operators are drilling wells with longer lateral pipelines to access more gas or oil per well.43 Hence, more water is required per well, and more wastewater will be generated even as the pace of drilling slows. Indeed, according to nationwide data provided to investors, the average amount of water used to frack a single well has more than doubled since 2013 from 2.6 million gallons per well to 5.3 million gallons in 2016, due to longer laterals and more intensive fracking. The consequence for drought-stricken regions is increasing water stress even as the drill rig count declines. Fifty-seven percent of hydraulically fractured oil and gas wells in the United States are located in water-stressed areas.44 Likewise, the 2016 slowdown in oil and gas drilling has not translated into decreased demand for silica sand, which is used to prop open the hydraulically fractured cracks. Instead, the move toward “mega-fracking,” which creates many more fractures per well, has driven up the average volume of sand used per well and thus overall demand.45

The unstable economic fundamentals of the industry as a whole have multiple consequences for public health and safety. The low price of oil and gas, coupled with short-lived well production, has led companies drilling shale to reduce the value of their assets by billions of dollars, creating shortfalls that are largely filled through asset sales and increasing debt load. Falling prices means that interest payments are consuming revenue of many smaller companies, raising concerns that revenue losses will lead to cut-backs in safety measures. Thus, the fundamental economic uncertainties of shale gas and oil production further exacerbate the risks of fracking to public health and safety. As we go to the press, the rate of active shale gas drilling in the United States was, once again, on the upswing.46

\textbf{11) Fracking raises issues of environmental justice.} Inequalities in opportunities to participate in environmental decision-making and uneven impacts of environmental hazards along racial and socioeconomic lines are signature issues of environmental justice. Although not yet fully characterized, emerging evidence reveals that, in several regions where fracking is practiced, wellpads and associated infrastructure are disproportionately sited in non-white and low-income communities. A pattern of racially biased permitting was recently documented in the heavily fracked Eagle Ford area of southern Texas where a public health research team from University of California, Los Angeles and the University of North Carolina showed that disposal wells for

fracking wastewater were more than twice as common in areas where residents are more than 80 percent people of color than in majority white communities.47 Since 2007, more than 1,000 waste disposal wells have been permitted in the Eagle Ford Shale region where groundwater is the primary source of drinking water.48 Another recent study looked at economic disparities in the intensely drilled northern Texas city of Denton and found that those benefiting most from Denton’s mineral wealth tended to live elsewhere, while the environmental burdens remained local and fell hardest on those who did not have a voice in mineral-leasing decisions. “Nonmineral owners are essentially excluded from the private decisions, as the mineral owners not only receive the direct monetary benefits, but also hold a great deal of state-sanctioned power to decide if and how [shale gas development] proceeds.”49

Poor communities of color are disproportionately affected by drilling activities in California. Of Los Angeles residents living within a quarter mile of a well, more than 90 percent are people of color. In November 2015, civic groups led by youth sued the city of Los Angeles for racial discrimination based on allegations of a preferential permitting process and unequal regulatory enforcement for oil wells located in neighborhoods of color. Together, these differential practices have resulted in a higher concentration of wells with fewer environmental protections in black and Latino communities.50 Another study found a higher concentration of drilling and fracking operations in impoverished communities throughout the state of Pennsylvania as well as in localized areas of West Virginia, but it did not find differences with respect to race. “The results demonstrate that the environmental injustice occurs in areas with unconventional wells in Pennsylvania with respect to the poor population.”51

12) \textbf{Health care professionals are increasingly calling for bans or moratoria until the full range of potential health hazards from fracking are understood.} In May 2015, the Medical Society of the State of New York passed a resolution recognizing the potential health impacts of natural gas infrastructure and pledging support for a governmental assessment of the health and environmental risks associated with natural gas pipelines. (See footnote 720.) The American Medical Association (AMA) adopted a similar resolution that supports legislation requiring all levels of government to seek a comprehensive Health Impact Assessment regarding the health and environmental risks associated with natural gas pipelines. (See footnote 719.) In May 2016, Physicians for Social Responsibility called for a ban on fracking, stating, “We cannot stay healthy in an unhealthy environment. Nor can we survive indefinitely on a planet growing hotter and more prone to extreme, unpredictable and destructive weather. These factors impel PSR to

call for a ban on fracking and for a rapid transition to cleaner, healthier, carbon-free sources of energy.”52 In July 2016, the UK health professional organization Medact released an updated assessment of the potential health impacts of shale fracking in England, concluding that the United Kingdom should abandon its policy to encourage shale gas extraction, and urged an “indefinite moratorium” on fracking. (See footnote 878.) In October 2016, a group of health care professionals in Massachusetts called for an immediate moratorium on major new natural gas infrastructure until the impact of these projects on the health of the communities affected can be adequately determined through a Comprehensive Health Impact Assessment.53 The group noted that the operation of natural gas facilities risks human exposures to toxic, cancer-causing, and radioactive pollution due to the presence of naturally co-occurring contaminants, toxic additives to the hydraulic fracturing process used to produce much of the country’s natural gas supply, and through the operation of transmission pipelines.54 Also in October, in a unanimous vote of the society’s 300-member House of Delegates, the Pennsylvania Medical Society called for a moratorium on new shale gas drilling and fracking in Pennsylvania and an initiation of a health registry in communities with pre-existing operations.55, 56

Other U.S. medical groups calling for bans or moratoria include Chesapeake PSR and the Alliance of Nurses for Healthy Environments. Concerned Health Professionals of New York, which provided science for the successful effort to ban fracking in New York State, has inspired affiliations of like-minded public health scientists and health care providers that are now advocating for moratoria or bans on fracking in various other regions. These include Concerned Health Professionals of Maryland, Concerned Health Professionals of Ireland, and Concerned Health Professionals of Neuquén, Argentina.

Air pollution

Air pollution associated with fracking is a grave concern with a range of impacts. Researchers have documented dozens of air pollutants from drilling and fracking operations that pose serious health hazards. Areas with substantial drilling and fracking build-out show high levels of ground-level ozone (smog), striking declines in air quality, and, in several cases, increased rates of health problems with known links to air pollution. Air sampling surveys find high concentrations of volatile organic compounds (VOCs), especially carcinogenic benzene and formaldehyde, both at the wellhead and at distances that exceed legal setback distances from wellhead to residence. In some cases, VOC concentrations exceeded federal safety standards by several orders of magnitude. Evidence implicates the U.S. shale gas boom in the recent global spike in atmospheric ethane. Drilling and fracking operations in North Dakota’s Bakken oil and gas field alone contribute two percent of global ethane emissions and directly impact air quality across North America. Ethane is both a greenhouse gas and a precursor for ozone formation.

- July 23, 2016 – A study conducted at the Boulder Atmospheric Observatory examined sources of summertime ozone formation (smog) in Colorado’s Front Range and found that 17 percent of locally created ozone was created by volatile organic compounds (VOCs) from drilling and fracking operations.⁵⁷ Colorado has exceeded the federal ozone standard for the past nine years, a period of time that corresponds to a boom in oil and gas drilling in the Wattenberg Gas Field where the number of active wells has nearly doubled.⁵⁸

- June 13, 2016 – Between 2009 and 2014, ethane emissions in the Northern Hemisphere increased by about 400,000 tons annually, the bulk of it from North American oil and gas activity, according to research by an international team led by the University of Colorado Boulder.⁵⁹ After peaking in the 1970s, global ethane emissions began declining, primarily due to stricter air quality emission controls. In 2009, however, that downward trend reversed itself. “About 60 percent of the drop we saw in ethane levels over the past 40 years has already been made up in the past five years…. If this rate continues, we are on track to return to the maximum ethane levels we saw in the 1970s in only about three more years. We rarely see changes in atmospheric gases that quickly or dramatically,”

said lead researcher Detlev Helmig. Samples were collected from locations around the world, but the largest increases in ethane were documented over areas of heavy oil and gas activity in the central and eastern United States. Ethane contributes to the creation of ground-level ozone pollution (smog), a known human health hazard. The authors noted that “… ozone production from these emissions has led to air quality standard exceedances in the Uintah Basin, Utah, and Upper Green River Basin, Wyoming, [oil and natural gas] regions.” Two scientists not involved in the study published an accompanying commentary, concluding, “There is a danger that these non-methane hydrocarbon emission changes can offset emission policies and controls aimed at reducing ozone concentrations,” and “[t]hese oil and gas operations are threatening to reverse what had been an important success story: decades of declining air pollution in North America.” (See also the entry dated April 2, 2016 in Threats to the Climate System.)

- June 1, 2016 – Existing data on air pollutants emitted from drilling and fracking operations “support precautionary measures to protect the health of infants and children,” according to a review by a team of researchers (members of which include co-authors of this Compendium). Researchers focused on exposures to ozone, particulate matter, silica dust, benzene, and formaldehyde—all of which are associated with drilling and fracking operations—noting that all are linked to adverse respiratory health effects, particularly in infants and children. Benzene, for example, emitted from gas wells, production tanks, compressors, and pipelines, is a carcinogen also linked to serious respiratory outcomes in infants and children, including pulmonary infections in newborns. As the authors emphasized, this review did not consider other air pollutants commonly associated with drilling and fracking activities, namely hydrogen sulfide, polycyclic aromatic hydrocarbons, and oxides of nitrogen. Although improved exposure assessment, air monitoring, and long-term studies are still lacking, existing evidence was sufficient for the authors to “strongly recommend precautionary measures at this time.”

- April 26, 2016 – About two percent of global ethane emissions originate from the Bakken shale oil and gas field, which, according to research led by University of Michigan researchers, emits 250,000 tons of ethane per year. “Two percent might not sound like a lot, but the emissions we observed in this single region are 10 to 100 times larger than reported in inventories. They directly impact air quality across North America. And they’re sufficient to explain much of the global shift in ethane concentrations,” according

to Eric Kort, first author of the study. Ethane is a gas that affects climate and decreases air quality. As a greenhouse gas, ethane is the third-largest contributor to human-caused climate change. Ethane contributes to ground-based ozone pollution as it breaks down and reacts with sunlight to create smog. This surface-level ozone is linked to respiratory problems, eye irritation, and crop damage. Global ethane levels were decreasing until 2009, leading the researchers to suspect that the U.S. shale gas boom may be responsible for the global increase in levels since 2010.

- April 5, 2016 – Helicopter-based infrared camera surveys of more than 8,000 oil and gas wells in seven U.S. regions found that well pads emit considerably more methane and volatile organic compounds (VOCs) than captured by earlier inventories. Moreover, these emissions were widely and unpredictably variable from site to site and from well to well. Over 90 percent of total airborne emissions from well pads originated with vents and hatches on aboveground storage tanks. The inability to predict which well sites were “superemitters” (meaning that they leaked into the air more than 200 cubic feet of methane and volatile organic compounds per hour) implies that continuous, site-specific monitoring is required to regulate methane leaks from drilling and fracking operations. In a comment about the findings to InsideClimate News, Cornell University engineer Anthony Ingraffea, who was not an author of the paper, said, “It makes regulation very difficult. If you have all these possible sites where you can have leaks, you can never have enough inspectors with all the right equipment being in all the right places at all the right times. It’s too complex a system.”

- February 19, 2016 – Legally enforced minimal distances between well sites and residences are based on political compromises rather than peer-reviewed science and “may not be sufficient to reduce potential threats to human health in areas where hydraulic fracturing occurs,” according to the findings of an interdisciplinary team including medical professionals and other researchers. The team incorporated geography, current regulations, historical records of blowout incidents and evacuations, thermal modeling, direct air pollution measurement, and vapor cloud modeling within the Marcellus (PA), Barnett (TX), and Niobrara (Northeastern and Northwestern Colorado and parts of Wyoming, Kansas, and Nebraska) Shale regions. The authors focused solely on well sites and excluded pipelines and compressor stations, which limited the data on explosions and evacuations and restricted air pollution results. Even so, the results showed that current natural gas well setbacks in the three areas “cannot be considered sufficient in all cases to protect public health and safety.” People living within setback distances are potentially vulnerable to thermal injury during a well blowout, and they are

also susceptible to exposures of benzene and hydrogen sulfide at levels above those known to cause health risks.\(^{67}\)

- **August 1, 2015** – “[C]linicians should be aware of the potential impact of fracking when evaluating their patients,” concluded a team writing on behalf of the Occupational and Environmental Health Network of the American College of Chest Physicians. Their article stated that the over 200,000 U.S. workers employed by well-servicing companies “… are exposed to silica, diesel exhaust, and [volatile organic compounds], and, at some sites, hydrogen sulfide and radon, raising concerns about occupational lung diseases, including silicosis, asthma, and lung cancer.” The authors went on to say, “[i]n addition to occupational exposures, workers and nearby residents are also exposed to air pollutants emitted from various stages of fracking, including nitrogen oxides (NOx), VOCs, ozone, hazardous air pollutants, methane, and fine particulate matter.” Authors pointed to several recent reversals in progress on air quality owed to fracking-related activity, including significant emissions of nitrogen oxides, a precursor of ozone, and spikes in fine particulate matter in fracking-intensive areas of Pennsylvania.\(^{68}\)

- **July 9, 2015** – The California Council on Science and Technology, in collaboration with the Lawrence Berkeley National Laboratory, released the second and third volumes of an extensive, peer-reviewed assessment of fracking in California. Air quality impacts are the focus of volume 2, chapter 3. The assessment found that current inventory methods underestimate methane and volatile organic chemical emissions from oil and gas operations and that fracking occurs in areas of California—most notably in the San Joaquin Valley and South Coast Air Basins—that already suffer from serious air quality problems. Further, no experimental studies of air emissions from drilling and fracking operations have ever been conducted in California. Although California has well-developed air quality inventory methods, they are “not designed to estimate well stimulation emissions directly, and it is not possible to determine well stimulation emissions from current inventory methods.”\(^{69}\)

- **July 1, 2015** – In accordance with California Senate Bill No. 4, the California Division of Oil, Gas, and Geothermal Resources released a three-volume environmental impact report on oil and gas well stimulation treatments in the state (which, in California, include fracking along with acidizing and other unconventional extraction technologies that break up oil- or gas-containing rock). The Division determined that fracking and related operations can have “significant and unavoidable” impacts on air quality, including

increasing ozone and other federally regulated pollutants to levels that violate air quality standards or that would make those violations worse.70, 71

- May 29, 2015 – Each of stage of the drilling and fracking process “… has distinct operations that occur and particular sets of air emissions that may affect the respiratory tract,” wrote West Virginia University researcher Michael McCawley. Some states do have setback requirements, which “… may provide a margin of safety for fire and explosions but [do] not necessarily assure complete dilution or negligible exposure from air emissions.” His paper described the specific air contaminants associated with respiratory effects for each stage of operations. For example, the actual fracking stage potentially emits diesel exhaust, VOCs, particulate matter, ozone precursors, silica, and acid mists. McCawley reviewed the health effects linked to each of the contaminant types. Though many long-term effects may not yet be apparent in shale gas regions, “[a]t a minimum, one would expect to see similar rates of respiratory disease to that found near highways with heavy traffic flow.”72

- April 21, 2015 – In a study funded by the electric power industry, a research team found that fracking had diminished air quality in rural areas downwind of gas sites in two heavily drilled Pennsylvania counties but that concentrations of volatile organic compounds were not as high as expected based on results in other states. Methane levels were higher than previous research had found.73 The extent to which the results can be generalized to the Marcellus basin as a whole, the authors emphasized, remains uncertain.74

- April 15, 2015 – In a review of the literature, Colorado researchers demonstrated that four common chemical air pollutants from drilling and fracking operations—benzene, toluene, ethylbenzene, and xylene (BTEX)—are endocrine disruptors commonly found in ambient air that have the ability to interfere with human hormones at low exposure levels, including at concentrations well below EPA recommended exposure limits. Among the health conditions linked to ambient level exposures to the BTEX family of air pollutants: sperm abnormalities, reduced fetal growth, cardiovascular disease, respiratory

70 California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (2015, July 1). Analysis of Oil and Gas Well Stimulation Treatments in California, Volume II. Retrieved from http://www.conservation.ca.gov/dog/SB4DEIR/Pages/SB4_DEIR_TOC.aspx

dysfunction, and asthma. This review suggests that BTEX may have endocrine disrupting properties at low concentrations, presenting an important line of inquiry for future research. BTEX are used globally in consumer products, and are released from motor vehicles and oil and natural gas operations that are increasingly in close proximity to homes, schools, and other places of human activity.

- March 26, 2015 – Fracking can pollute air hundreds of miles downwind from the well pad, according to the results of a study from University of Maryland. Researchers took hourly measurements of ethane in the air over Maryland and the greater Washington, DC area, where fracking does not occur, and compared them to ethane data from areas of West Virginia, Pennsylvania, and Ohio where it does. They found month-to-month correlations, indicating that the ethane pollution in the air over Maryland appears to be coming from drilling and fracturing operations in these other states. Ethane, a minor component of natural gas, rose 30 percent in the air over the Baltimore and Washington DC area since 2010, even as other air pollutants declined in concentration. By contrast, no increase in ethane levels were found in Atlanta, Georgia, which is not downwind of fracturing operations. Given this evidence for widespread ethane leakage, the paper’s lead author asked how much methane and other, more reactive emissions might be escaping from wells, noting that “a substantial amount of hydrocarbons” are emitted as a result of flowback procedures following the fracturing process.

- February 27, 2015 – A team of researchers from University of Texas, funded in part by the gas industry, examined ozone (smog) production resulting from natural gas extraction and use in Texas. Previous research by this team had found that the increased use of natural gas for generating electricity, as a replacement for coal, contributed to overall reductions in daily maximum ozone concentrations in northeastern Texas. By contrast, the results of this study found an increase in ozone in the Eagle Ford Shale area of south Texas. The Eagle Ford Shale is upwind from both Austin and San Antonio. A potent greenhouse gas, methane is also a precursor for ground-level ozone and hence a contributor to smog formation.

January 16, 2015 – Researchers from a number of universities, including the University of New Hampshire and Appalachian State University, used a source apportionment model to estimate the contribution of natural gas extraction activities to overall air pollution, including ozone, in heavily drilled southwest Pennsylvania. This regional air sampling effort demonstrated significant changes in atmospheric chemistry from drilling and fracking operations there. The researchers found that drilling and fracking operations may affect compliance with ozone standards.

November 20, 2014 – The Texas Commission on Environmental Quality confirmed high levels of benzene emissions and other volatile organic compounds around an oil and gas facility in the Eagle Ford Shale. Symptoms reported by local residents were consistent with those known to be associated with exposure to such chemicals.

November 14, 2014 – A University of Colorado at Boulder research team found that residential areas in intensely drilled northeastern Colorado have high levels of fracking-related air pollutants, including benzene. In some cases, concentrations exceed those found in large urban centers and are within the range of exposures known to be linked to chronic health effects. According to the study, “High ozone levels are a significant health concern, as are potential health impacts from chronic exposure to primary emissions of non-methane hydrocarbons (NMHC) for residents living near wells.” The study also noted that tighter regulations have not resulted in lower air pollution levels, “Even though the volume of emissions per well may be decreasing, the rapid and continuing increase in the number of wells may potentially negate any real improvements to the air quality situation.”

October 30, 2014 – A research team assembled by University at Albany Institute for Health and the Environment identified eight highly toxic chemicals in air samples collected near fracking and associated infrastructure sites across five states: Arkansas, Colorado, Pennsylvania, Ohio, and Wyoming. The most common airborne chemicals detected included two proven human carcinogens (benzene and formaldehyde) and two potent neurotoxicants (hexane and hydrogen sulfide). In 29 out of 76 samples, concentrations far exceeded federal health and safety standards, sometimes by several orders of magnitude. Further, high levels of pollutants were detected at distances exceeding legal setback distances from wellheads to homes. Highly elevated levels of formaldehyde, for example, were found up to a half-mile from a wellhead. In Arkansas, seven air samples contained formaldehyde at levels up to 60 times the level known to

raise the risk for cancer. “This is a significant public health risk,” said lead author David O. Carpenter, MD, in an accompanying interview: “Cancer has a long latency, so you’re not seeing an elevation in cancer in these communities. But five, 10, 15 years from now, elevation in cancer is almost certain to happen.”

- October 21, 2014 – Responding to health concerns by local residents, a research team from University of Cincinnati and Oregon State University found high levels of air pollution in heavily drilled areas of rural Carroll County, Ohio. Air monitors showed 32 different hydrocarbon-based air pollutants, including the carcinogens naphthalene and benzo[a]pyrene. The researchers plan additional monitoring and analysis.

- October 21, 2014 – Using a mobile laboratory designed by the National Oceanic and Atmospheric Administration (NOAA), a research team from the University of Colorado at Boulder, the NOAA Earth System Research Laboratory, and the Karlsruhe Institute of Technology looked at air pollution from drilling and fracking operations in Utah’s Uintah Basin. The researchers found that drilling and fracking emit prodigious amounts of volatile organic air pollutants, including benzene, toluene, and methane, all of which are precursors for ground-level ozone (smog). Multiple pieces of equipment on and off the well pad, including condensate tanks, compressors, dehydrators, and pumps, served as the sources of these emissions. This research shows that drilling and fracking activities are the cause of the extraordinarily high levels of winter smog in the remote Uintah basin—which regularly exceed air quality standards and rival that of downtown Los Angeles.

- October 2, 2014 – A joint investigation by InsideClimate News and the Center for Public Integrity found that toxic air emissions wafting from fracking waste pits in Texas are unmonitored and unregulated due to federal exemptions that classify oil and gas field waste as non-hazardous.

- October 1, 2014 – In a major paper published in Nature, an international team led by the National Oceanic and Atmospheric Administration demonstrated that exceptionally high emissions of volatile organic compounds (VOCs) explain how drilling and fracking operations in Utah’s Uintah Basin create extreme wintertime ozone events even in the

86 Environmental Health Sciences Center, Oregon State University. (2014). List of 62 PAH analyzed in Carroll County, OH. Retrieved from http://ehsc.oregonstate.edu/air/62PAH
absence of abundant ultraviolet light and water vapor, which are typically required to produce ground-level ozone (smog). Current air pollution trends in the United States are toward lower nitrogen oxides from urban sources and power generation, but increasing methane and VOCs from oil and gas extraction activities threaten to reverse decades of progress in attaining cleaner air. According to the study, the consequences for public health are “as yet unrecognized.”

- September 6, 2014 – As part of a comparative lifecycle analysis, a British team from the University of Manchester found that shale gas extracted via fracking in the United Kingdom would generate more smog than any other energy source evaluated (coal, conventional and liquefied gas, nuclear, wind, and solar). Leakage of vaporous organic compounds during the necessary removal of hydrogen sulfide gas, along with the venting of gas both during drilling and during the process of making the well ready for production, were major contributors. “In comparison to other technologies, shale gas has high [photochemical smog]. In the central case, it is worse than solar PV, offshore wind and nuclear power by factors of 3, 26 and 45, respectively. Even in the best case, wind and nuclear power are still preferable (by factors of 3.3 and 5.6 respectively).”

- September 2014 – ShaleTest Environmental Testing conducted ambient air quality tests and gas-finder infrared video for several children’s play areas in North Texas that are located in close proximity to shale gas development. The results showed a large number of compounds detected above the Method Reporting Limit (the minimum quantity of the compound that can be confidently determined by the laboratory). Air sampling found three known/suspected carcinogens, and a number of other compounds associated with significant health effects. Benzene results from Denton, Dish, and Fort Worth are particularly alarming since they exceeded the long-term ambient air limits set by the Texas Commission on Environmental Quality, and benzene is a known carcinogen. “Benzene was found at all but one sampling location …. This is particularly noteworthy as benzene is a known carcinogen (based on evidence from studies in both people and lab animals), AND because it exceeds [levels above which effects have the potential to occur.]”

- August 24, 2014 – A Salt Lake City Tribune investigation found that evaporation from 14 fracking waste pits in western Colorado has added tons of toxic chemicals to Utah’s air in the last six years. Further, the company responsible operated with no permit, underreported its emissions and provided faulty data to regulators.

August 2014 – A four-part investigation by the San Antonio Express-News found that natural gas flaring in the Eagle Ford Shale in 2012 contributed more than 15,000 tons of volatile organic compounds and other contaminants to the air of southern Texas—which is roughly equivalent to the pollution that would be released annually by six oil refineries. No state or federal agency is tracking the emissions from individual flares.93

June 26, 2014 – Public health professionals at the Southwest Pennsylvania Environmental Health Project reported significant recurrent spikes in the amount of particulate matter in the air inside of residential homes located near drilling and fracking operations. Captured by indoor air monitors, the spikes tend to occur at night when stable atmospheric conditions hold particulate matter low to the ground. Director Raina Ripple emphasized that spikes in airborne particulate matter are likely to cause acute health impacts in community members. She added, “What the long-term effects are going to be, we’re not certain.”94

May 8, 2014 – Researchers at the National Oceanic and Atmospheric Administration (NOAA) found high levels of methane leaks as well as benzene and smog-forming volatile organic compounds in the air over oil and gas drilling areas in Colorado. Researchers found methane emissions three times higher than previously estimated and benzene and volatile organic compound levels seven times higher than estimated by government agencies. The Denver Post noted that Colorado’s Front Range has failed to meet federal ozone air quality standards for years.95

April 26, 2014 – A Texas jury awarded a family $2.8 million because, according to the lawsuit, a fracking company operating on property nearby had “created a ‘private nuisance’ by producing harmful air pollution and exposing [members of the affected family] to harmful emissions of volatile organic compounds, toxic air pollutants and diesel exhaust.” The family’s 11-year-old daughter became ill, and family members suffered a range of symptoms, including “nosebleeds, vision problems, nausea, rashes, blood pressure issues.”96 Because drilling did not occur on their property, the family had initially been unaware that their symptoms were caused by activities around them.

April 16, 2014 – Reviewing the peer-review literature to date of “direct pertinence to the environmental public health and environmental exposure pathways,” a U.S. team of researchers concluded: “[a] number of studies suggest that shale gas development

contributes to levels of ambient air concentrations known to be associated with increased risk of morbidity and mortality.”

- April 11, 2014 – A modeling study commissioned by the state of Texas made striking projections about worsening air quality in the Eagle Ford Shale. Findings included the possibility of a 281 percent increase in emissions of volatile organic compounds (VOCs). Some VOCs cause respiratory and neurological problems; others, like benzene, are also carcinogens. Another finding was that nitrogen oxides—which react with VOCs in sunlight to create ground-level ozone, the main component of smog—increased 69 percent during the peak ozone season.

- March 29, 2014 – Scientists warn that current methods of collecting and analyzing emissions data do not accurately assess health risks. Researchers with the Southwest Pennsylvania Environmental Health Project showed that methods do not adequately measure the intensity, frequency, or durations of community exposure to the toxic chemicals routinely released from drilling and fracking activities. They found that exposures may be underestimated by an order of magnitude, mixtures of chemicals are not taken into account, and local weather conditions and vulnerable populations are ignored.

- March 27, 2014 – University of Texas research pointed to “potentially false assurances” in response to community health concerns in shale gas development areas. Dramatic shortcomings in air pollution monitoring to date include no accounting for cumulative toxic emissions or children’s exposures during critical developmental stages, and the potential interactive effects of mixtures of chemicals. Chemical mixtures of concern include benzene, toluene, ethylbenzene, and xylenes.

- March 13, 2014 – Volatile organic compounds (VOCs) emitted in Utah’s heavily drilled Uintah Basin led to 39 winter days exceeding the EPA’s eight-hour National Ambient Air Quality Standards level for ozone pollutants the previous winter. “Levels above this threshold are considered to be harmful to human health, and high levels of ozone are known to cause respiratory distress and be responsible for an estimated 5,000 premature deaths in the U.S. per year,” according to researchers at the University of Colorado. Their observations “reveal a strong causal link between oil and gas emissions, accumulation of

air toxics, and significant production of ozone in the atmospheric surface layer.”

Researchers estimated that total annual VOC emissions at the fracking sites are equivalent to those of about 100 million cars.

- **March 3, 2014** – In a report summarizing “the current understanding of local and regional air quality impacts of natural gas extraction, production, and use,” a group of researchers from NOAA, Stanford, Duke, and other institutions described what is known and unknown with regard to air emissions including greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. Crystalline silica was also discussed, including as a concern for people living near well pads and production staging areas.

- **February 18, 2014** – An eight-month investigation by the *Weather Channel*, the *Center for Public Integrity*, and *InsideClimate News* into fracking in the Eagle Ford Shale in Texas revealed that fracking is “releasing a toxic soup of chemicals into the air.” They noted very poor monitoring by the state of Texas and reported on hundreds of air complaints filed relating to air pollution associated with fracking.

- **December 18, 2013** – An interdisciplinary group of researchers in Texas collected air samples in residential areas near shale gas extraction and production, going beyond previous Barnett Shale studies by including emissions from the whole range of production equipment. They found that most areas had “atmospheric methane concentrations considerably higher than reported urban background concentrations,” and many toxic chemicals were “strongly associated” with compressor stations.

- **December 10, 2013** – Health department testing at fracking sites in West Virginia revealed dangerous levels of benzene in the air. Wheeling-Ohio County Health Department Administrator Howard Gamble stated, “The levels of benzene really pop out. The amounts they were seeing were at levels of concern. The concerns of the public are validated.”

October 11, 2013 – Air sampling before, during, and after drilling and fracking of a new natural gas well pad in rural western Colorado documented the presence of the toxic solvent methylene chloride, along with several polycyclic aromatic hydrocarbons (PAHs) at “concentrations greater than those at which prenatally exposed children in urban studies had lower developmental and IQ scores.”

September 19, 2013 – In Texas, air monitoring data in the Eagle Ford Shale area revealed potentially dangerous exposures of nearby residents to hazardous air pollutants, including cancer-causing benzene and the neurological toxicant, hydrogen sulfide.

September 13, 2013 – A study by researchers at the University of California at Irvine found dangerous levels of volatile organic compounds in Canada’s “Industrial Heartland” where there are more than 40 oil, gas, and chemical facilities. The researchers noted high levels of hematopoietic cancers (leukemia and non-Hodgkin’s lymphoma) in men who live closer to the facilities.

April 29, 2013 – Using American Lung Association data, researchers with the Environmental Defense Fund determined that air quality in rural areas with fracking was worse than air quality in urban areas.

March 2013 – A review of regional air quality damages in parts of Pennsylvania in 2012 from Marcellus Shale development found that air pollution was a significant concern, with regional damages ranging from $7.2 to $32 million in 2011.

February 27, 2013 – In a letter from Concerned Health Professionals of New York to Governor Andrew Cuomo, a coalition of hundreds of health organizations, scientists, medical experts, elected officials, and environmental organizations noted serious health concerns about the prospects of fracking in New York State, making specific note of air pollution. Signatory organizations included the American Academy of Pediatrics of New York, the American Lung Association of New York, and Physicians for Social

Responsibility. The New York State Medical Society, representing 30,000 medical professionals, has issued similar statements.114

- January 2, 2013 – A NOAA study identified emissions from oil and gas fields in Utah as a significant source of pollutants that contribute to ozone problems.115 Exposure to elevated levels of ground-level ozone is known to worsen asthma and has been linked to respiratory illnesses and increased risk of stroke and heart attack.116

- December 3, 2012 – A study linked a single well pad in Colorado to more than 50 airborne chemicals, 44 of which have known health effects.117

- July 18, 2012 – A study by the Houston Advanced Research Center modeled ozone formation from a natural gas processing facility using accepted emissions estimates and showed that regular operations could significantly raise levels of ground-level ozone (smog) in the Barnett Shale in Texas and that gas flaring further contributed to ozone levels.118

- March 19, 2012 – A Colorado School of Public Health study found air pollutants near fracking sites linked to neurological and respiratory problems and cancer.119, 120 The study, based on three years of monitoring at Colorado sites, found a number of “potentially toxic petroleum hydrocarbons in the air near gas wells including benzene, ethylbenzene, toluene, and xylene.” Lisa McKenzie, PhD, MPH, lead author of the study and research associate at the Colorado School of Public Health, said, “Our data show that it is important to include air pollution in the national dialogue on natural gas development that has focused largely on water exposures to hydraulic fracturing.”121

• December 12, 2011 – Cancer specialists, cancer advocacy organizations, and health organizations summarized the cancer risks posed by all stages of the shale gas extraction process in a letter to New York Governor Andrew Cuomo.122

• October 5, 2011 – More than 250 medical experts and health organizations reviewed the multiple health risks from fracking in a letter sent to New York Governor Andrew Cuomo.123

• April 21, 2011 – *Environment & Energy* (E&E) reported that ozone levels exceeding federal health standards in Utah’s Uintah Basin, as well as wintertime ozone problems in other parts of the Intermountain West, stem from oil and gas extraction. Levels reached nearly twice the federal standard, potentially dangerous even for healthy adults to breathe. Keith Guille, spokesman for the Wyoming Department of Environmental Quality, said, “We recognize that definitely the main contributor to the emissions that are out there is the oil and gas industry….”124

• March 8, 2011 – The Associated Press reported that gas drilling in some remote areas of Wyoming caused a decline of air quality from pristine mountain air to levels of smog and pollution worse than Los Angeles on its worst days, resulting in residents complaining of watery eyes, shortness of breath, and bloody noses.125

• November 18, 2010 – A study of air quality in the Haynesville Shale region of east Texas, northern Louisiana, and southwestern Arkansas found that shale oil and gas extraction activities contributed significantly to ground-level ozone (smog) via high emissions of ozone precursors, including volatile organic compounds and nitrogen oxides.126 Ozone is a key risk factor for asthma and other respiratory and cardiovascular illnesses.127, 128, 129, 130

123 Physicians, Scientists & Engineers for Healthy Energy. (2011, October 5). Letter to Governor Cuomo [Letter to A. Cuomo].
• September 2010 – A health assessment by the Colorado School of Public Health for gas development in Garfield County, Colorado determined that air pollution will likely “be high enough to cause short-term and long-term disease, especially for residents living near gas wells. Health effects may include respiratory disease, neurological problems, birth defects and cancer.”

• January 27, 2010 – Of 94 drilling sites tested for benzene in air over the Barnett Shale, the Texas Commission on Environmental Quality discovered two well sites emitting what they determined to be “extremely high levels” and another 19 emitting elevated levels.

Water contamination

The so-called “Halliburton loophole” that is part of the 2005 Energy Policy Act exempts hydraulic fracturing from most provisions of the Safe Drinking Water Act. As a result, the oil and gas sector is the only U.S. industry that is allowed to inject known hazardous materials near, or directly into, underground drinking water aquifers. At the same time, in most states where fracking occurs, routine monitoring of groundwater aquifers near drilling and fracking operations is not required nor are companies compelled to fully disclose the identity of chemicals used in fracking fluid, their quantities, or their fate once injected underground. Scientific inquiry is hampered by this secrecy. Nevertheless, emerging evidence reveals that drilling and fracking inherently threaten groundwater and have polluted drinking water sources. A range of studies from across the United States presents irrefutable evidence that groundwater contamination occurs as a result of fracking activities and is more likely to occur close to well pads. In Pennsylvania alone, more than 240 private drinking water wells have been contaminated or have dried up as the result of drilling and fracking operations over a seven-year period. A 2016 study by Stanford University researchers confirmed and extended earlier findings by the EPA that fracking and fracking-related operations have contaminated underground drinking water sources in Pavillion, Wyoming. The U.S. Agency for Toxic Substances and Disease Registry has determined that the chemical contamination of some private water wells in Dimock, Pennsylvania posed health risks and made the water unsuitable for drinking. Of the 1,000 different chemicals that are known ingredients in fracking fluid, an estimated 100 are known endocrine disruptors and act as reproductive and developmental toxicants.

Injection wells for disposal of fracking waste also pose demonstrable threats to drinking water aquifers and surface water. Overall, the number of well blowouts, spills, and cases of surface water contamination from waste pits and other sources has steadily grown. Wastewater spills have caused widespread contamination of streams in North Dakota. In both West Virginia and Colorado, streams near fracking or waste disposal operations showed elevated levels of endocrine-disrupting activity, raising larger concerns about similar impacts on surface water across the nation. Municipal sewage treatment plants are not capable of treating fracking waste; disposal of fracking waste through them can encourage the formation of carcinogenic byproducts during chlorination. In February 2016, the Government Accountability Office concluded in a report to Congress that the Environmental Protection Agency had failed to provide sufficient oversight for injection wells receiving fracking waste. The disposal of fracking wastewater remains a problem without a safe, viable solution.

- July 11, 2016 – An interdisciplinary team led by University of Colorado researchers found methane in 42 water wells in the intensely drilled Denver-Julesburg Basin where high volume, horizontal fracking operations began in 2010. By examining isotopes and gas molecular ratios, the researchers determined that the gas contaminating these wells was thermogenic in origin, rather than microbial, and therefore had migrated up into the groundwater from underlying oil- and gas-containing shale. The steady rate of well contamination over time—two cases per year from 2001 to 2014—suggests that well failures, rather than the process of hydraulic fracturing itself, was the mechanism that created migration pathways for the stray gas to reach drinking water sources. Of the 42 affected wells, 11 had already been identified by state regulators as suffering from “barrier failures.”

134 Duke University geochemist Avner Vengosh, who was not an author of the paper, commented on the study in an accompanying article in Inside Climate News: “The bottom line here is that industry has denied any stray gas contamination: that whenever we have methane in a well, it is always preexisting. The merit of this is that it’s a different oil and gas basin, a different approach, and it’s saying that stray gas could happen.” In this same article, Inside Climate News reported that national standards for well construction do not exist nor are there laws governing the type of cement that is used to seal the wellbore and prevent leaks.

- May 24, 2016 – The U.S. Agency for Toxic Substances and Disease Registry (ATSDR) conducted a public health evaluation using groundwater data gathered in 2012 by the U.S. Environmental Protection Agency (EPA) from 64 private drinking water wells in Dimock, Pennsylvania where natural gas drilling and fracking activities began in 2008 and where residents began reporting problems with their water shortly thereafter. The agency found that water samples collected from 27 Dimock wells contained contaminants “at levels high enough to affect human health.” These included methane, salts, organic chemicals, and arsenic. In 17 wells, levels of methane were high enough to create risk of

fire or explosion.136 Methane levels were not assessed in wells prior to the start of fracking activities in the area. Hence, the study is limited by lack of pre-drilling baseline data, and investigators did not attempt to determine the source of the contaminants. However, in its focus on identifying health impacts, ATSDR’s evaluation is a more comprehensive study than that conducted four years earlier by the EPA and calls into question its earlier, more reassuring conclusions.137,138

- **May 9, 2016** – Sampling downstream of a fracking wastewater disposal facility in West Virginia, a U.S. Geological Survey (USGS) team documented changes in microbial communities and found evidence indicating the presence of fracking waste in water and sediment samples collected from Wolf Creek in West Virginia. Specifically, the researchers documented increased concentrations of barium, bromide, calcium, sodium, lithium, strontium, iron, and radium downstream of the disposal well.139 In a *Washington Post* story about this study, lead author Denise Akob said that the key take-away message “is really that we’re demonstrating that facilities like this can have an environmental impact.”140 (This study was done in collaboration with Susan Nagel’s team, which studied endocrine-disrupting activity in this same stream. See entry below for April 6, 2016.)

- **April 30, 2016** – As part of an investigation based on aerial photographs taken by emergency responders during spring 2016 flooding, the *El Paso Times* documented plumes and sheens of chemicals from tipped-over storage tanks and inundated oil wells and fracking sites entering rivers and streams. “Many of the photos shot during Texas’ recent floods show swamped wastewater ponds at fracking sites, presumably allowing wastewater to escape into the environment—and potentially into drinking-water supplies.”141

- **April 27, 2016** – Using geochemical and isotopic tracers to identify the unique chemical fingerprint of Bakken region brines, a Duke University study found that accidental spills of fracking wastewater have contaminated surface water and soils throughout North

Dakota where more than 9,700 wells have been drilled in the past decade. Contaminants included salts as well as lead, selenium, and vanadium. In the polluted streams, levels of contaminants often exceeded federal drinking water guidelines. Soils at spill sites showed elevated levels of radium. The study concluded that “inorganic contamination associated with brine spills in North Dakota is remarkably persistent, with elevated levels of contaminants observed in spill sites up to 4 years following the spill events.” In a comment about this study, lead author and Duke University geochemist Avner Vengosh said, “Until now, research in many regions of the nation has shown that contamination from fracking has been fairly sporadic and inconsistent. In North Dakota, however, we find it is widespread and persistent, with clear evidence of direct water contamination from fracking.”

- April 6, 2016 – A research team led by Susan Nagel at the University of Missouri traced a spike in endocrine-disrupting activity in a West Virginia stream, Wolf Creek, to an upstream facility that stores fracking wastewater. Levels detected downstream of the waste facility were above levels known to create adverse health effects and alter the development of fish, amphibians, and other aquatic organisms. Endocrine-disrupting compounds were not elevated in upstream sections of the creek. (See also entry for May 9, 2016 above.)

- March 29, 2016 – A study by Stanford University scientists determined that fracking and related oil and gas operations have indeed contaminated drinking water in the town of Pavillion, Wyoming where residents have long complained about foul-tasting water. The researchers found substances in the water that match those used in local fracking operations or found in nearby pits used for the disposal of drilling waste. Chemical contaminants included benzene, a known carcinogen, and toluene, a neurotoxicant. Possible mechanisms for contamination include defective cement well casings; spills and leaks from disposal pits; and underground migration of chemicals into aquifers from the fracked zone, which, in this area, is quite shallow. Also, in the Pavillion area, operators sometimes fracked directly into underground sources of water. One of the authors of this study, Dominic DiGuilio, was also a lead scientist on the EPA’s earlier aborted investigation of Pavillion’s drinking water. (See entry for December 6, 2015 below.) In an interview about his new research, DiGiulio said that his findings raise concerns about similar water pollution in other heavily fracked regions. “Pavillion isn’t geologically

unique in the West, and I'm concerned about the Rocky Mountain region of the U.S. The impact on [underground drinking water sources] could be fairly extensive. Pavillion is like a canary in a coal mine and we need to look at other fields.”

Co-author Rob Jackson noted, “There are no rules that would stop a company from doing this anywhere else.”

- February 22, 2016 – Relying on voluntary disclosures reported to the FracFocus registry and a list compiled by the U.S. Congress, a German team surveyed the physiochemical properties of chemicals used in hydraulic fracturing fluid to evaluate their environmental fate and potential toxicity. Common ingredients included those known to contaminant groundwater, such as solvents, as well as those known to react strongly with other chemicals, such as biocides and strong oxidants, indicating that almost certainly, new chemical products are formed during the process of fracking and its aftermath. Hence, non-toxic additives could potentially react with other substances to create harmful byproducts. The authors conclude that a comprehensive assessment of risks would require an unabridged list of the chemical additives used for fracking, and they call for full disclosure.

- February 9, 2016 – An investigation of water contamination in the Barnett Shale by ABC-affiliate station WFAA in Dallas found numerous violations by operators who ignored regulations that require sealing vertical well pipes with a cement sheath to protect groundwater from stray gas and other vapors that might escape and migrate upwards into overlying aquifers. The WFAA report said that the Texas Railroad Commission, which oversees drilling and fracking operations in Texas, has failed to respond to alleged violations of a rule that requires cement seals around steel well casings in geological zones where drilling has penetrated layers of rock containing oil and gas deposits.

- February 8, 2016 – An investigation by the Columbus Dispatch revealed that the amount of water that operators use for hydraulic fracturing in Ohio gas wells increased steadily from 2011 to 2015. The total amount of water increased, as did the volume of water used per well—from an average of 5.6 million gallons per well in 2011 to 7.6 million in 2014. The reason is that the horizontally drilled holes beneath each well have become longer, and these require more water during the fracking process.

February 2016 – In a lengthy account to Congress on the status of the underground waste injection well program that is overseen by the EPA, the U.S. Government Accountability Office (GAO) reported that the agency “has not consistently conducted oversight activities necessary to assess whether state and EPA-managed programs are protecting underground sources of drinking water” from contamination by fracking waste. Specifically, the GAO took the EPA to task for failure to require well-specific inspections, collect data on enforcement actions, review permitting requirements by state regulatory agencies, or analyze the resources the agency would need to do all the above to adequately oversee the Underground Injection Control program. The GAO noted that it had once before, in 2014, previously found the EPA negligent in its responsibilities to monitor drinking water sources for possible contamination with fracking waste.153 (See entry below for September 23, 2014.)

January 6, 2016 – Yale School of Public Health researchers analyzed more than 1,021 chemicals either used in fracking fluid or created during the process of hydraulic fracturing. They found that 781 of these chemicals lacked basic toxicity data. Of the 240 that remained, 157 were reproductive or developmental toxicants. These included arsenic, benzene, cadmium, formaldehyde, lead, and mercury.154 Commenting on this study, lead author Nicole Deziel said, “This evaluation is a first step to prioritize the vast array of potential environmental contaminants from hydraulic fracturing for future exposure and health studies. Quantification of the potential exposure to these chemicals, such as by monitoring drinking water in people’s homes, is vital for understanding the public health impact of hydraulic fracturing.”155

December 15, 2015 – A research team led by geologist Mukul Sharma from Dartmouth College discovered that chemical reactions between fracking fluid and rock can contribute to the toxicity of fracking wastewater. Specifically, the researchers found that fracking fluid can chemically react with the fractured shale in ways that cause barium, a toxic metal, to leach from clay minerals in the Marcellus Shale.156, 157

December 6, 2015 – The Caspar Star Tribune investigated the EPA’s decision to transfer its study of possible fracking-related drinking water contamination in Pavillion, Wyoming to a state agency in 2013. Preliminary data from the EPA suggested that drilling and fracking operations had contaminated drinking water supplies. To date, the

A state study has found no definitive link between drilling and water contamination. Interviews with officials and documents obtained under the Freedom of Information Act revealed that the EPA had bowed to political pressure from state officials and industry representatives and that Wyoming regulators narrowed the scope of the study considerably and conducted little fieldwork.\(^{158}\) (See also entry above for March 29, 2016.)

- November 19, 2015 – The Science Advisory Board (SAB) for the U.S. Environmental Protection Agency reviewed the EPA’s June 2015 draft assessment of fracking’s impacts on drinking water, and challenged some of the summary statements that accompanied it, saying that they were over-generalized and not always aligned with the data in the report itself. Specifically, the SAB said, in a draft review, that the data cited by the report were too limited to support the headlined claim in the executive summary that drinking water impacts were neither “widespread” nor “systemic.” The SAB also critiqued the study for downplaying local impacts in its conclusions, noting that these impacts can sometimes be severe.\(^{159}\)

- October 19, 2015 – A six-month investigation by Penn Live found long-standing “systemic failures” on the part of the Pennsylvania Department of Environmental Protection to enforce regulations governing drilling and fracking operations. Lack of oversight and reliance on industry self-policing have been the hallmarks of Marcellus Shale development for the past ten years, in violation of Pennsylvanians’ constitutional right to clean air and water. Among the findings of this investigation: chronically leaking wastewater impoundments for which no fines or notices were issued to the operator; laboratory coding systems designed to obscure possible detections of certain chemical contaminants in residents’ drinking water; and lack of inspections at well sites.\(^{160}\)

- October 13, 2015 – An international team of researchers found detectable levels of multiple organic chemical contaminants in private drinking water wells in northeastern Pennsylvania where fracking is practiced. One of the compounds was a known additive of fracking fluid. Chemical fingerprinting and noble gas isotopes were used to determine if the contaminants most likely originated from surface spills at the well site or via upward transport from the shale itself. The organic pollutants found in the water did not contain chemical markers—certain elements and salts—that would indicate migration from deep geological strata. The authors concluded that “the data support a transport mechanism…to groundwater via accidental release of fracturing fluid chemicals derived

from the surface rather than subsurface flow of these fluids from the underlying shale formation.”161, 162

- September 23, 2015 – A team of researchers, examining how natural gas drilling and fracking operations across the nation affect creeks, streams and rivers, developed a predictive model and vulnerability index for surface water. They found that “all shale plays, regardless of location, had a suite of catchments that spanned highly degraded to those that are less altered and naturally sensitive to alteration.” Surface water in Pennsylvania’s Marcellus Shale region is classified by this model as vulnerable to fracking-related impacts because of steep slopes and loose, erodible soils within the watersheds.163

- July 30, 2015 – As reported by the Los Angeles Times, unlined waste pits and hillside spraying of oil-field wastewater have contaminated groundwater in Kern County, California. Five of six monitoring wells in the 94-acre waste site showed high levels of salt, boron, and chloride, but it is not known how far and fast the contaminated plume has traveled.164

- July 21, 2015 – By surveying records for 44,000 wells fracked between 2010 and 2013, researchers from Stanford University, Duke University, and Ohio State University attempted a first-ever assessment of the range of depths at which fracking occurs across the United States. They found that many wells are shallower than widely presumed.165 As the authors noted, vertical fractures are able to propagate 2,000 feet upward, and hence, “shallow hydraulic fracturing often has greater potential risks of contamination than deeper hydraulic fracturing does.” This study showed that drinking water sources may be more vulnerable from upward migration of fracking contaminants than previously presumed. Surprisingly, the researchers found no strong relationship between depth and the volume of water and chemicals used for fracking. Many wells were both shallow and water-intensive, with significant variation in water use from state to state.166

• July 9, 2015 – A multi-volume report from the California Council of Science and Technology (CCST) found threats to groundwater in California from several parts of the fracking lifecycle, most notably from toxic wastewater. First, wastewater from California fracking operations is sometimes used for crop irrigation, in which case contaminants may seep from the surface of agricultural areas into groundwater. Second, nearly 60 percent of fracking wastewater in California is disposed of in unlined, open-air pits, a practice that is banned in almost all other states. There are 900 such waste disposal pits in the state, most of which are located in Kern County. Third, for many years, fracking wastewater in California has been mistakenly sent, via injection wells, directly into protected aquifers containing clean freshwater. California’s Division of Oil, Gas and Geothermal Resources allowed fracking wastes to be injected into aquifers that it believed were exempt from the U.S. Safe Drinking Water Act. Conceding this mistake, the agency has shut down 23 injection wells for fracking waste disposal and established a two-year timetable for phasing out other wells injecting waste into aquifers that should have been protected. Fracking also threatens California’s groundwater resources through water consumption, according to the CCST study. While this volume of water represents a small percentage of overall annual water consumption in California, fracking-related water use is, the study noted, disproportionately concentrated in areas of the state already suffering from water shortages. Further drawdowns of these aquifers may interfere with agricultural and municipal water needs. In addition, because the oil-containing rock layers in California are located closer to the surface than in other states, the state’s groundwater is potentially vulnerable to chemical contamination through vertical faults and fissures and via old and abandoned wells. The absence of evidence for direct contamination of groundwater by fracking, the study concluded, reflects absence of investigation rather than evidence of safety.

• June 30, 2015 – The U.S. Geological Survey (USGS) released the first nationwide map of water usage for hydraulic fracturing. It shows wide geographic and temporal variation in the amount of water used to frack a single well. In general, gas wells consume more water per well (5.1 million gallons on average) than oil wells (4 million gallons). Median annual water volumes needed to frack a single horizontal oil or gas well increased dramatically—by a factor of 25 or more—between 2000 and 2014. A typical gas or oil well that is horizontally fracked now requires between six and eight Olympic-sized swimming pools of water. In 2014, the majority (58 percent) of new hydraulically

fracked oil and gas wells were horizontally drilled. The watersheds where the most water was consumed for hydraulic fracturing are mostly located in southern or southwestern states and correspond to the following shale formations: the Eagle Ford and Barnett Shales in Texas; the Haynesville-Bossier Shale in Texas and Louisiana; the Fayetteville Shale in Arkansas; the Tuscaloosa Shale in Louisiana and Mississippi; and the Woodford Shale in Oklahoma. The Marcellus and Utica Shales—which underlie watersheds in parts of Ohio, Pennsylvania, West Virginia, and New York—were also in the top seven water-consuming shale plays in the United States.

- June 26, 2015 – A decade-long USGS study of 11,000 public drinking water wells in California—nearly all the groundwater used for public supply—found high levels of potentially toxic contaminants in about 20 percent of the wells, affecting about 18 percent of the state’s population. Although the study did not specifically investigate contaminants from oil and gas extraction, it does provide evidence for farm irrigation draining into groundwater, raising questions about the possible contamination of drinking water aquifers from the reuse of fracking wastewater for crop irrigation.

- June 16, 2015 – A University of Texas research team documented widespread drinking water contamination throughout the heavily drilled Barnett Shale region in northern Texas. The study, which analyzed 550 water samples from public and private water wells, found elevated levels of 19 different hydrocarbon compounds associated with fracking (including the carcinogen benzene and the reproductive toxicant, toluene), detections of methanol and ethanol, and strikingly high levels of 10 different metals. “In the abstract, we can’t state that unconventional oil and gas techniques are responsible,” the lead author, Zachariah Hildenbrand, said in a media interview. “But when you get into areas where drilling is happening, you find more instances of contamination. It’s not coincidental. There are causes for concern.”

- June 5, 2015 – The U.S. Environmental Protection Agency’s (EPA) long-awaited 600-page draft report on the potential impacts of fracking for drinking water resources confirmed specific instances of drinking water contamination linked to drilling and fracking activities. The report also identified potential mechanisms, both above and below ground, by which drinking water resources can be contaminated by fracking. In

In some cases, drinking water was contaminated by spills of fracking fluid and wastewater. In other cases, “[b]elow ground movement of fluids, including gas ... have contaminated drinking water resources.” The EPA investigators documented 457 fracking-related spills over six years but acknowledged that they do not know how many more may have occurred. Of the total known spills, 300 reached an environmental receptor such as surface water or groundwater. The EPA also conceded that insufficient baseline drinking water data and a lack of long-term systematic studies limited the power of its findings. The EPA investigation confirmed a number of specific instances where these potential mechanisms did indeed lead to drinking water contamination. An assertion in the EPA’s accompanying press release that it had not found “widespread, systemic impacts to drinking water resources” was quoted out of context by many media sources as proof that fracking poses little threat to drinking water. To the contrary, this report confirmed that drilling and fracking activities have contaminated drinking water in some cases and acknowledged that it cannot ascertain how widespread the problem was due to insufficient data. EPA Science Advisor Thomas A. Burke later clarified that the report does not show that fracking is safe. Burke said, “That is not the message of this report. The message of this report is that we have identified vulnerabilities in the water system that are really important to know about and address to keep risks as low as possible.”

- May 19, 2015 – A Pennsylvania State University research team documented the presence of a fracking-related solvent, 2-n-Butoxyethanol, in the drinking water from three homes in Bradford County, Pennsylvania, as part of an investigation of private drinking water wells near drilling and fracking operations that contained methane and foam. This finding represents the first fully documented case of a commonly used fracking chemical entering a drinking water source. “The most likely explanation of the incident is that stray natural gas and drilling or [hydrofracking] compounds were driven ~1-3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source.” In an accompanying New York Times story, lead author Susan Brantley described the geology in northern Pennsylvania “as being similar to a layer cake with numerous layers that extend down thousands of feet to the Marcellus Shale. The vertical fractures are like knife cuts through the layers. They can extend deep underground, and can act like superhighways for escaped gas and liquids from drill wells to travel along, for distances greater than a mile away.”

- May 15, 2015 – A research team from the University of Colorado Boulder and California State Polytechnic Institute developed a model for identifying which fracking fluid

chemicals are most likely to contaminate drinking water. Of 996 fracking fluid compounds known to be in use, researchers screened 659 of them for their ability to persist, migrate, and reach groundwater aquifers over a short time scale. Of the fifteen compounds so identified, two were commonly used in fracking operations: naphthalene and 2-butoxyethanol. Both are ingredients in surfactants and corrosion inhibitors. The authors noted that 2-butoxyethanol has been detected in drinking water in a heavily fracked area of Pennsylvania. Exposure to 2-butoxyethanol has been linked to birth defects in animals. Naphthalene is a possible human carcinogen that is toxic to red blood cells and contributes to kidney and liver damage. Researchers did not consider the impact of mixtures, interactions between contaminants, or chemical transformations during the fracking or flowback process and noted, “the need for data on the degradation of many compounds used in fracturing fluids under conditions relevant for groundwater transport.”

- May 7, 2015 – A survey of streams in Arkansas, led by the University of Central Arkansas, found alterations in macroinvertebrate communities to be related to drilling and fracking operations in the Fayetteville Shale. Fracking activity near streams was associated with greater sediment and more chlorophyll. “This study suggests that land disturbance from gas development affected stream communities.”

- April 20, 2015 – A USGS team analyzed water brought to the surface during natural gas extraction at 13 fracked wells in northern Pennsylvania. They found large variability in the volatile organic compounds and microorganisms in the water samples from different wells. Organic chemical contaminants included benzene, toluene, and perchloroethylene, chloroform, and methane chloride. The presence of microbes was associated with concentrations of benzene and acetate. Despite the addition of biocides during the fracking process, hydrogen sulfide-producing bacteria were present at culturable levels, along with methogenic and fermenting bacteria. The source of these microorganisms was not determined. “Therefore, we cannot exclude the possibility that these microorganisms are native to the shale formation and reactivated by [hydrofracking] activities, as their physiology does not indicate a terrestrial surficial source.”

- April 8, 2015 – A University of Colorado Boulder research team’s analysis of the organic chemicals found in liquid waste that flowed out of gas wells in Colorado after they had been fracked revealed the presence of many fracking fluid additives, including biocides, which are potentially harmful if they leak into groundwater. According to the authors, treatment of fracking wastewater must include aeration, precipitation, disinfection, a biological treatment to remove dissolved organic matter, and reverse osmosis.

- March 12, 2015 – A team led by geologist Donald Siegel of Syracuse University found no relationship between methane levels in drinking water wells and proximity to oil or gas wells in a heavily fracked area of northeastern Pennsylvania.\footnote{Siegel, D. I., Azzolina, N. A., Smith, B. J., Perry, A. E., & Bothun, R. L. (2015). Methane concentrations in water wells unrelated to proximity to existing oil and gas wells in northeastern Pennsylvania. \textit{Environmental Science & Technology}, 49, 4106-12. doi: 10.1021/es505775c} However, Siegel failed to reveal in his paper — as is required by the journal — that he had received industry funding from the Chesapeake Energy Corporation. Subsequently, the journal published a lengthy correction that revealed that Chesapeake had not only privately funded the lead author but had provided the baseline groundwater data set. A second author was revealed to be a former employee of Chesapeake, and another had worked as a consultant in the energy sector.\footnote{Siegel, D. I., Azzolina, N. A., Smith, B. J., Perry, A. E., & Bothun, R. L. (2015). Correction to Methane concentrations in water wells unrelated to proximity to existing oil and gas wells in northeastern Pennsylvania. \textit{Environmental Science & Technology}, 49, 4106-12. doi: 10.1021/es505775c}

- March 3, 2015 – A Duquesne University study of private drinking water wells in an intensely drilled southwestern Pennsylvania community compared pre-drill and post-drill data on water quality and found changes in water chemistry that coincided with the advent of drilling and fracking activities. Levels of chloride, iron, barium, strontium, and manganese were elevated. In some cases, concentrations exceeded health-based maximum contaminant levels. Methane was detected in most houses tested. Surveys of
residents revealed widespread complaints about changes in water quality that began after drilling and fracking operations commenced. Violation records from the Pennsylvania Department of Environmental Conservation uncovered possible pathways for water contamination. The researchers concluded that alterations of local hydrology caused by the injection of large volumes of hydraulic fracturing fluids may have mobilized contaminants left over from legacy oil, gas, and mining operations as well as opened pathways for the migration of fracking fluids themselves.188

- March 3, 2015 – A research team from Duquesne University reviewed the evidence for environmental impacts to air and water from activities related to shale gas extraction in Pennsylvania and explored potential mechanisms for contamination of air and water related to the drilling and fracking process itself. Among them: deformations of the shale bedrock caused by the injection of large volumes of fluid result in “pressure bulbs” that are translated through rock layers and can impact faults and fissures, so affecting groundwater.189

- February 23, 2015 – The arrival of drilling and fracking activities coincided with an increase in salinity in a creek that drains public land in a semi-arid region of Wyoming, determined a USGS study. The dissolved minerals associated with the rise in salinity matched those found in native soil salts, suggesting that disturbance of naturally salt-rich soils by ongoing oil and gas activities, including pipeline, road, and wellpad construction, was the culprit. “As [shale gas and oil] development continues to expand in semi-arid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.”190

- February 14, 2015 – A review by a \textit{Dickinson Press} news reporter of disposal well files and more than 2,090 mechanical integrity tests revealed that North Dakota frack waste injection wells were often leaky and that state regulators continued to allow fluid injection into wells with documented structural problems even though the wells did not meet EPA guidelines for well bore integrity. Officials with the North Dakota Division of Oil and Gas said they had primary enforcement responsibilities and that EPA guidance did not apply to these wells. The investigation noted, “… a review of state and federal documents, as well as interviews with geologists, engineers, environmental policy experts and lawyers who have litigated under the Safe Drinking Water Act, suggests the agency is loosely interpreting guidance and protocols that are meant to maintain the multiple layers of protection that separate aquifers from the toxic saltwater.” \textit{The Dickinson Press}

is the daily newspaper for Stark County in southwest North Dakota.191

- February 11, 2015 – The Los Angeles Times analyzed self-reported testing results on fracking wastewater that California drillers were required to submit to the state. Samples of wastewater collected from 329 fracked oil wells found that virtually all—98 percent—contained benzene at levels that exceeded standards for permissible concentrations in drinking water. This finding likely underrepresents the extent of the problem, according to the newspaper investigation, because many operators failed to comply with reporting requirements. The discovery that fracking wastewater is high in benzene is particularly alarming in light of the admission by the state of California that it had inadvertently allowed frac waste disposal directly into aquifers containing clean water that could potentially be used for drinking. Those wells are now the subject of federal and state review.192

- February 1, 2015 – An investigation of the chemical make-up of fracking fluid found that the compositions of these mixtures vary widely according to region and company, making the process of identifying individual compounds difficult. Classes of hydrocarbon-based chemicals include solvents, gels, biocides, scale inhibitors, friction reducers, and surfactants. Chemical analysis identified around 25 percent of the organic compounds that are believed to be present in fracking fluid and that are necessary to test for in identifying groundwater and drinking water contamination.193 Dr. Imma Ferrer, lead author, explained in a Science Daily article about her research that “[b]efore we can assess the environmental impact of the fluid, we have to know what to look for.”194

- January 30, 2015 – A USGS review of national water quality databases found that insufficient data exist to understand the impact of fracking on drinking water.195 In a media interview, lead author Zack Bowen said, “There are not enough data available to be able to assess the potential effects of oil and gas development over larger geographic areas.”196

January 21, 2015 – A team of researchers from the USGS and Virginia Tech University established that petroleum-based hydrocarbons can break down underground in ways that promote the leaching of naturally occurring arsenic into groundwater. Arsenic is a known human carcinogen that causes bladder, lung, and skin cancer. Elevated levels of arsenic in drinking water represent a public health threat. Researchers found that arsenic concentrations in a hydrocarbon plume can reach 23 times the current drinking water standard of 10 micrograms per liter. The authors of the study said that the metabolism of carbon-rich petroleum products by subterranean microbes is involved in a complex geochemical process that leads to mobilization of arsenic into aquifers.

January 14, 2015 – Researchers from Duke University, Dartmouth College, and Stanford University found high levels of iodide, bromide, and ammonium in samples of wastewater from fracking operations in both the Marcellus and Fayetteville Shales. These same chemicals were present when fracking wastewater was discharged into rivers and streams at three treatment sites in Pennsylvania and during an accidental spill in West Virginia. Iodide and bromide are known to create toxic disinfection byproducts when downstream water is subsequently chlorinated for drinking water. In water, ammonium can convert to ammonia, which is toxic to aquatic life. The authors noted that this is the first study to identify ammonium and iodide as widespread in fracking waste discharges. In an interview with the Pittsburgh Post-Gazette, lead author Avner Vengosh said that the findings raise new concerns about the environmental and health impacts of wastewater from drilling and fracking operations.

November 27, 2014 – An interdisciplinary team of researchers found methane contamination in drinking water wells located in eight areas above the Marcellus Shale in Pennsylvania and the Barnett Shale in Texas, with evidence of declining water quality in the Barnett Shale area. By analyzing noble gases and their isotopes (helium, neon, argon), the investigators were able to isolate the origin of the fugitive methane in drinking water. The results implicate leaks through cement well casings as well as via naturally occurring cracks and fissures in the surrounding rock. In a related editorial, one of the study’s authors, Robert Jackson, called on the EPA to reopen its aborted investigation into

drinking water contamination in heavily fracked areas of Texas. Jackson also emphasized that methane migration through unseen cracks in the rock surrounding the wellbore “raises the interesting possibility that a drilling company could follow procedures — cementing and casing below the local aquifer — and still create a potential pathway for gas to migrate into drinking water.”

- November 26, 2014 – A critical review of biocides in fracking fluid by a Colorado State team found that the fate of these chemicals underground is not known and their toxicity not well understood. While many biocides are short-lived, some may transform into more toxic or persistent compounds. Among the most common chemical components of fracking fluid, biocides are used to inhibit the growth of deep-life microorganisms, including sulfate-reducing bacteria that contribute to corrosion of well casings and can form biofilms that prevent the upward flow of natural gas. Oxidizing biocides that are chlorine- or bromine-based can react with other fracking chemicals and may produce toxic halogenated byproducts. The authors noted biocides pose a unique risk for drinking water when fracking liquid waste is treated for discharge to surface water via sewage treatment plants. Sub-lethal concentrations may contribute to adaptation of surviving microorganisms and, hence, antibiotic resistance of pathogens. They cited particular concern over surface spills and well integrity issues associated with casing or cement failure.

- November 3, 2014 – The West Virginia Department of Environmental Protection confirmed that three private drinking water wells were contaminated when Antero Resources mistakenly drilled into one of its own gas wells. Benzene, a human carcinogen, and toluene, a reproductive toxicant, were detected in the drinking water at concentrations four times the legal maximum limit. Additionally, a nearby abandoned gas well, a drinking water well, and an actively producing gas well were all pressurized as a result of the mishap and began exhibiting “artesian flow.”

- October 22, 2014 – A follow-up to the August 2014 Environmental Integrity Project report describes an even greater potential public health threat from a loophole in the Safe Drinking Water Act, wherein companies are allowed to inject other petroleum products (beyond diesel) without a permit, and many of these non-diesel drilling fluids contain even higher concentrations of the same toxins found in diesel. The authors recommend that “EPA should revisit its guidance and broaden the categories of diesel products that

require Safe Drinking Water Act permits before they can be injected into oil and gas wells.205

- October 20, 2014 – While developing a technique to fingerprint and trace accidental releases of hydraulic fracturing fluids, researchers showed that liquid waste from shale gas fracturing operations is chemically different than waste flowing out of conventional wells. The researchers hypothesized that the hydraulic fracturing process itself liberates elements from clay minerals in the shale formations, including boron and lithium, which then enter the liquid waste.206

- October 15, 2014 – Four thousand gallons of liquid fracking waste dumped into Waynesburg sewer system was discovered by sewage treatment plant workers in Greene County, Pennsylvania. The Department of Environmental Protection surmised that “someone removed a manhole cover in a remote location and dumped the fluid.” The treatment plant discharges into a creek that feeds the Monongahela River, which provides drinking water to more than 800,000 people.207

- October 6, 2014 – A state investigation that found no fracking-related water contamination in a drinking water well in Pennsylvania’s Washington County was invalidated by testimony presented to the state Environmental Hearing Board. Not all contaminants that were present in the water were reported, and the investigation relied on obsolete testing methods. More sophisticated testing revealed the presence of several chemical contaminants in the well water. The well is located 2,800 feet down gradient from a drilling site and fracking waste pit where multiple spills and leaks more than four years earlier had contaminated two springs.208

- September 23, 2014 – In a two-part audit of records, the U.S. Government Accountability Office (GAO) found that the EPA is failing to protect U.S. drinking water sources from fracking-related activities such as waste disposal via injection wells. Nationwide, 172,000 injection wells accept fracking waste; some are known to have contaminated drinking water. And yet, both short-term and long-term monitoring is lax, and record-keeping varies widely from state to state. The EPA neither mandates nor recommends a fixed list of chemicals for monitoring on the grounds that “injection fluids can vary widely in composition and contain different naturally occurring chemicals and fluids used in oil and

gas production depending on the source of the injection fluid.”209 Disposal of oil and gas waste via injection wells is, in fact, subject to regulation under the Safe Drinking Water Act, but, in practice, no one knows exactly what the waste contains, and regulations are deficient. In the United States, at least two billion gallons of fluids are injected into the ground each day to enable oil and gas extraction via fracking or to dispose of liquid waste from fracking operations.210, 211

- September 18, 2014 – Range Resources was fined a record $4.5 million by the Pennsylvania Department of Environmental Protection for contaminating groundwater. The culprits were six leaking pits in Washington County that each held millions of gallons of fracking wastewater.212

- September 12, 2014 – A Pennsylvania State ecosystems scientist, together with USGS scientists, reviewed the current knowledge of the effects of fracking and its associated operations on terrestrial and aquatic ecosystems in 20 shale plays in the U.S. Findings of species and habitats at highest risk include (in addition to land-based examples) vernal pond inhabitants and stream biota. The research builds on previous reviews identifying “three main potential stressors to surface waters: changes in water quantity (hydrology), sedimentation, and water quality.” Researchers determined that there are no published data specifically on the effects of fracking on forest-dwelling amphibians, but “many species breed in vernal ponds which are negatively affected by changes in water quantity and quality and direct disturbance. Many amphibians are also highly sensitive to road salts.” Given that the U.S. EPA recently found 55% of all rivers and streams to be in poor condition, these researchers warned, “Large-scale development of shale resources might increase these percentages.” They expressed concern for the native range of brook trout by the cumulative effects of shale development, especially in Pennsylvania.213

- September 9, 2014 – A research team from Stanford and Duke Universities discovered that fracking wastewater processed by sewage treatment plants contributes to the formation of carcinogenic chemical byproducts. These raise public health risks when downstream surface water is used for drinking. Even when fracking wastewater was diluted by a factor of 10,000, the bromides and iodides in the waste reacted with organic matter to create highly toxic halogenated compounds—at troublingly high concentrations. These toxic compounds are not filterable by municipal wastewater treatment plants.

Halogenated disinfection byproducts in drinking water are linked to both colon and bladder cancers.214

- August 29, 2014 – A review of Pennsylvania Department of Environmental Protection files on fracking-related damage to drinking water—which are kept on paper and stored in regional offices—revealed that 243 private water supplies in 22 counties had been contaminated or had lost flow and dried up as a result of nearby drilling and fracking operations in the past seven years. Pollutants included methane, metals, and salts as well as carbon-based compounds (ethylene glycol and 2-butoxyethanol) that are known to be constituents of fracking fluid. As reported by the \textit{Pittsburgh Post-Gazette}, this tally—which came as a response to multiple lawsuits and open-records requests by media sources—was the first time the agency “explicitly linked a drilling operation to the presence of industrial chemicals in drinking water.”215, 216

- August 13, 2014 – Over the last decade, drilling companies have repeatedly claimed they are no longer using diesel fuel in fracking, although a 2011 investigation by U.S. House Democrats concluded otherwise. The Environmental Integrity Project examined disclosure data submitted to FracFocus and identified at least 351 wells in 12 states that have been fracked over the last four years with one or more of the five prohibited products identified as diesel. EIP researchers also discovered numerous fracking fluids with high diesel content for sale online, including over a dozen products sold by Halliburton and advertised as additives, friction reducers, emulsifiers, etc.217

- August 13, 2014 – An international team of researchers found high levels of carbon-based compounds in liquid fracking waste. These impurities can react with chlorine and bromine to create toxic byproducts. This study suggests that chemical treatment of liquid fracting waste will magnify its toxic potency, as will reusing and recycling it.218 The European Commission subsequently published a summary of these findings.219

• August 13, 2014 – A team from Lawrence Berkeley National Laboratory reported that scientific efforts to understand the hazards of fracking continue to be hampered by industry secrecy. A comprehensive examination of the chemical formulations of fracking fluid—whose precise ingredients are protected as proprietary business information—revealed that no publicly available toxicity or physical chemical information was available for one-third of all the fracking chemicals surveyed. Another ten percent of chemicals, including biocides and corrosion inhibitors, were known to be toxic to mammals.220, 221

• August 12, 2014 – A Stanford University research team working in the Pavillion gas basin in Wyoming documented that fracking in shallow layers of bedrock, including those that serve as drinking water aquifers, is not uncommon. This finding overturns the industry claim that oil and gas deposits targeted by fracking operations are located at much greater depths than underground drinking water sources and are isolated from them by hundreds of feet of impermeable rock. Because it is exempt from provisions of the Safe Drinking Water Act, fracking in drinking water aquifers is not prohibited by law.222

• August 3, 2014 – An investigation by the *Pittsburgh Post-Gazette* found that half of all fracking-related spills that resulted in violations and fines were not discovered by the gas companies themselves, even though Pennsylvania state law requires them to pro-actively seek and report such incidents. The newspaper’s analysis of hundreds of thousands of state and company documents showed that self-regulation in the gas fields is a failure. One-third of all spills were discovered by state inspectors, while one-sixth were found by residents. Likely, much contamination is entirely undetected and unreported.223

• July 21, 2014 – An investigation by the *Columbus Dispatch* showed that Halliburton delayed disclosure to federal and state EPA agencies of the full list of chemicals that spilled into a creek following a fire on one of its well pad in Monroe County, Ohio. Although the creek is an important supply of drinking water for downstream communities and the spill precipitated a mass die-off of fish and other aquatic wildlife, five full days passed before EPA officials were provided a full inventory of chemicals used at Halliburton’s operation. As a result, the public was denied knowledge of potential chemical exposures.224

• July 17, 2014 – A team of environmental scientists, biologists, and engineers, from institutions including the University of Michigan and McGill University, assessed the current state of understanding of the impact fracking and its associated activities have on the ecological health of surface waters. Though various approaches such as geographic information systems and site monitoring provide insights into potential risks to aquatic ecosystems, the authors concluded that inadequate data currently exist. They identified possible outcomes such as, “erosion and sedimentation, increased risk to aquatic ecosystems from chemical spills or runoff, habitat fragmentation, loss of stream riparian zones, altered biogeochemical cycling, and reduction of available surface and hyporheic water volumes because of withdrawal-induced lowering of local groundwater levels.”225

• July 7, 2014 – California Department of Gas, Oil, and Geothermal Resources ordered seven energy companies to stop injecting liquid fracking waste into aquifers. The ongoing drought that has compelled farmers to supplement irrigation with water drawn from groundwater sources prompted state officials to look at the status of aquifers previously considered too deep for use or too poor in quality. They discovered that at least seven injection wells were very likely pumping liquid fracking waste into protected groundwater supplies rather than aquifers that had been sacrificed for the purpose of waste disposal. Across the United States, more than 1000 aquifers are exempt from any type of pollution protection at all, and many of these are in California, according to a related ProPublica investigation.226

• June 25, 2014 – A study by Cornell University researchers found that fracking fluid and fracking wastewater mobilized previously deposited chemical contaminants in soil particles in ways that could potentially exacerbate the impacts of fracking fluid spills or leaks. The research team concluded that, by interfering with the ability of soil to bond to and sequester pollutants such as heavy metals, fracking fluids may release from soils an additional repository of contaminants that could migrate into groundwater.227

• June 23, 2014 – Building on earlier findings that water samples collected from sites with confirmed fracking spills in Garfield County, Colorado exhibited moderate to high levels of estrogen and androgen-disrupting activity, a University of Missouri team extended their investigation to other types of hormonal effects. As reported at a joint meeting of the International Society of Endocrinology and the Endocrine Society, their research documented that commonly used fracking chemicals can also block the receptors for thyroid hormone, progesterone, and glucocorticoids (a family of hormones involved in both fertility and immune functioning). Of 24 fracking chemicals tested, all 24 interfered

with the activity of one or more important hormone receptors. There is no known safe level of exposure to hormone-disrupting chemicals.²²⁸

• May 11, 2014 – According to the U.S. Government Accountability Office, the federal government is failing to inspect thousands of oil and gas wells located on public land, including those that pose special risks of water contamination or other environmental damage. An investigation by the Associated Press found that the Bureau of Land Management “had failed to conduct inspections on more than 2,100 of the 3,702 wells that it had specified as ‘high priority’ and drilled from 2009 through 2012. The agency considers a well ‘high priority’ based on a greater need to protect against possible water contamination and other environmental safety issues.”²²⁹

• May 4, 2012 – A report for the Canadian Government, released under the Access to Information Act, reviewed the process, the regulatory framework globally, and the potential health hazards related to shale gas extraction. Additionally, the report evaluated mechanisms for potential impacts and summarized the data knowledge and data gaps. Regarding water contamination, the report determined, “Although quantitative data are lacking, the qualitative data available indicate that potential contamination of water related to the shale gas industry may present hazard to the public health, especially for local population.” Regarding air contamination: “air emissions related to the shale gas industry present health hazards since the air pollutants originating from the vehicles and engines fuelled by diesel are toxic to the respiratory and cardiovascular systems and can cause premature mortality, volatile organic compounds have been associated to neurotoxicity and some of these compounds (e.g. benzene) as well as NORMs are known or possible human carcinogens.” The report concluded, “Any step of shale gas exploration/exploitation may represent a potential source of drinking water and air contamination; Hydraulic fracturing and wastewater disposal were identified as the main potential sources of risk.”²³⁰

• March 25, 2014 – An industry-funded study of oil and gas well integrity found that more than six percent of wells in a major shale exploration region in Pennsylvania showed evidence of leaking and conceded that this number is likely an underestimate. Researchers concluded that the percentage of wells with some form of well barrier or integrity failure is highly variable and could be as high as 75 percent. A separate analysis

in the same study found 85 examples of cement or casing failures in Pennsylvania wells monitored between 2008 and 2011.231

- March 7, 2014 – In a comprehensive evaluation, Duke University scientists and colleagues reviewed the state of knowledge on possible effects of shale gas and hydraulic fracturing on water resources in the United States and concluded, “Analysis of published data (through January 2014) reveals evidence for stray gas contamination, surface water impacts in areas of intensive shale gas development, and the accumulation of radium isotopes in some disposal and spill sites.”232

- February 19, 2014 – A Pennsylvania court found a gas corporation guilty of contaminating a woman’s drinking water well in Bradford County. Methane levels after fracking were 1,300 to 2,000 times higher than baseline, according to the court brief. Iron levels and turbidity had also increased. The brief stated, “In short, Jacqueline Place lived for ten months deprived totally of the use of her well, and even after its ‘restoration,’ has been burdened with a water supply with chronic contamination, requiring constant vigilance and ongoing monitoring.”233

- January 16, 2014 – Data from the Colorado Oil and Gas Conservation Commission showed that fracking-related chemical spills in Colorado exceed an average rate of one spill per day. Of the 495 chemical spills that occurred in that state over a one-year period of time, nearly a quarter impacted ground or surface water. Sixty-three of the spills spread within 1,500 feet of pigs, sheep, and cows; 225 spread within 1,500 feet of buildings.234

- January 10, 2014 – Duke University water tests revealed ongoing water contamination in Parker County, Texas, providing evidence that the EPA had prematurely ended its prior investigation into the water contamination.235 A letter sent to the EPA from more than 200 environmental organizations called on the agency to re-open its investigation.236

• January 5, 2014 – An Associated Press investigation into drinking water contamination from fracking in four states—Pennsylvania, Ohio, West Virginia, and Texas—found many cases of confirmed water contamination and hundreds more complaints. The Associated Press noted that their analysis “casts doubt on industry view that it rarely happens.”

• December 24, 2013 – A report from the EPA Inspector General concluded that evidence of fracking-related water contamination in Parker County, Texas was sound and faulted the EPA for prematurely ending its investigation there, relying on faulty water testing data from the gas industry in doing so, and failure to intervene when affected residents’ drinking water remained unsafe. As reported by Business Insider, “The EPA Screwed Up When It Dropped This Fracking Investigation.”

• December 16, 2013 – Lead by Susan Nagel of the University of Missouri School of Medicine, researchers documented endocrine-disrupting properties in chemicals commonly used as ingredients of fracking fluid and found similar endocrine-disrupting activity in groundwater and surface water samples collected near drilling and fracking sites in Garfield County, Colorado. Endocrine disruptors are chemicals that interfere with the activity of hormones in the body and, at very low concentrations, can raise the risk of reproductive, metabolic, and neurological disorders, especially when exposures occur in early life.

• December 7, 2013 – Reporting on the second gas leak at a single gas well in one month, the Fort Worth Star-Telegram uncovered another inherent risk of fracking for groundwater contamination: Silica sand, which is used as an ingredient in fracking fluid for its ability to prop open the shale fractures, can damage steel pipes as it flows back up the well along with the gas. According to Dan Hill, head of the petroleum engineering department at Texas A&M University, new wells are the most susceptible to sand erosion because “the amount of sand and gas rushing through valves and flow lines is at its greatest when a well first goes into production.”

November 28, 2013 – An Associated Press investigation uncovered nearly 300 oil pipeline spills in North Dakota in the previous ten months, all with no public notification. These were among some 750 “oil field incidents” that had occurred in the state over the same time period, also without public notification. Until the AP inquiry, industry and state officials had kept quiet about one particular “massive spill” that had been accidentally discovered by a wheat farmer. Even small spills can contaminate water sources permanently and take cropland out of production.²⁴⁴

November 26, 2013 – A USGS report found serious impacts of fracking on watersheds and water quality throughout the Appalachian Basin, as well as issues with radiation and seismic events. As noted in the report, the knowledge of how extraction affects water resources has not kept pace with the technology.²⁴⁵,²⁴⁶ Meanwhile, clean fresh water is becoming an increasingly scant resource. A report prepared for the U.S. State Department forecasts a serious freshwater shortage by 2030, with global demand exceeding supply by 40 percent.²⁴⁷

November 22, 2013 – A USGS study of pollution from oil production in North Dakota, where horizontal drilling and hydraulic fracturing are heavily used, identified two potential plumes of groundwater contamination covering 12 square miles. The cause was traced to a casing failure in a wastewater disposal well. Drilling companies had incorrectly assumed that, once injected underground, the wastewater would remain contained. According to EnergyWire, the development of the Bakken oil formation is “leaving behind an imprint on the land as distinct as the ones left by the receding ice sheets of the ice age.”²⁴⁸

September 10, 2013 – Pennsylvania Attorney General Kathleen Kane filed criminal charges against Exxon Mobil Corporation’s subsidiary, XTO Energy Corporation, for a spill of 50,000 gallons of toxic drilling wastewater in 2010 that contaminated a spring and a tributary of the Susquehanna River. In July, XTO settled civil charges for the incident without admitting liability by agreeing to pay a $100,000 fine and improve its wastewater management.²⁴⁹

• September 10, 2013 – Out of concern for risks posed to drinking water in the nation’s capital, George Hawkins, General Manager of DC Water, Washington, DC’s local water provider, called for a prohibition on horizontal drilling and hydraulic fracturing in the George Washington National Forest until the process can be proven safe. The Potomac River is the source of the District’s water supply and has its headwaters in the George Washington National Forest, which sits atop the Marcellus Shale. The general managers of Fairfax Water, provider of drinking water for Fairfax County, Virginia, and the U.S. Army Corps of Engineers have called for a similar prohibition.

• September 3, 2013 – The North Dakota Department of Mineral Resources voiced concern about an increasing number of fracking well blowouts (23 incidents in the past year) that result in spills and public safety threats.

• August 28, 2013 – A joint USGS and U.S. Fish and Wildlife Service study documented a causal link between a fracking wastewater spill and the widespread death of fish in the Acorn Fork, a creek in Kentucky.

• July 25, 2013 – A University of Texas at Arlington study of drinking water found elevated levels of arsenic and other heavy metals in some samples from private drinking water wells located within five kilometers of active natural gas wells in the Barnett Shale.

• July 3, 2013 – ProPublica reported that the EPA was wrong to have halted its investigation of water contamination in Wyoming, Texas and Pennsylvania—where high levels of benzene, methane, arsenic, oil, methane, copper, vanadium, and other chemicals associated with fracking operations have been documented. Although numerous organizations and health professionals around the country have since called on the agency to resume its investigation, no action has been taken.

• June 6, 2013 – Reviewing hundreds of regulatory and legal filings, Bloomberg News reported that drillers have offered out-of-court cash settlements and property buyouts to homeowners who claim that fracking ruined their water. These agreements typically

come with gag orders and sealed records. This strategy, the investigation noted, allows the industry to continue claiming that no cases of water contamination due to fracking have ever been confirmed, impedes public health research, and shields data from regulators, policy makers, and the new media. The EPA also long ago noted how non-disclosure agreements between oil and gas operators and landowners challenge scientific progress and keep examples of drilling harm secret from the public. In a 1987 report, the EPA wrote, “In some cases, even the records of well-publicized damage incidents are almost entirely unavailable for review. In addition to concealing the nature and size of any settlement entered into between the parties, impoundment curtails access to scientific and administrative documentation of the incident.”

- June 3, 2013 – A study by Duke University researchers linked fracking with elevated levels of methane, ethane, and propane in nearby groundwater. Published in Proceedings of the National Academy of Sciences, the study included results from 141 northeastern Pennsylvania water wells. Methane levels were, on average, six times higher in drinking water wells closer to drilling sites when compared with those farther away, while ethane was 23 times higher.

- May 19, 2013 – In Pennsylvania, the Scranton Times-Tribune released details of an investigation that revealed at least 161 cases of water contamination from fracking between 2008 and the fall of 2012, according to state Department of Environmental Protection records.

- April 2013 – Researchers analyzing publicly available Colorado data found 77 surface spills impacting groundwater in Weld County alone. Samples of these spills often exceeded drinking water maximum contaminant levels (MCLs) for benzene, toluene, ethylbenzene and xylene; for benzene, a known carcinogen, 90% of the samples exceeded the legal limit.

- March 4, 2013 – Researchers at the University of Pittsburgh Graduate School of Public Health analyzed samples of gas drilling wastewater discharged to surface water through

wastewater treatment plants. Barium, strontium, bromides, chlorides, and benzene all exceeded levels known to cause human health impacts.262

- December 9, 2012 – State data in Colorado showed more than 350 instances of groundwater contamination resulting from more than 2,000 spills from oil and gas operations over the past five years. Further, as the Denver Post reported, “Contamination of groundwater—along with air emissions, truck traffic and changed landscapes—has spurred public concerns about drilling along Colorado’s Front Range.”263

- May 2012 – A report by researchers at Natural Resources Defense Council and Carnegie Mellon University found that the options available for dealing with fracking wastewater are inadequate to protect public health and the environment, resulting in increasing quantities of toxic wastewater as an ongoing problem without a good solution.264

- January 11, 2012 – The USGS reported that the Marcellus Shale is already highly fractured and that numerous fissures naturally occurring within the formation could potentially provide pathways for contaminants to migrate vertically into water supplies.265

- October 25, 2011 – After receiving new information from two companies, members of Congress updated their findings to show that “between 2005 and 2009, oil and gas service companies injected 32.7 million gallons of diesel fuel or hydraulic fracturing fluids containing diesel fuel in wells in 20 states.”266

- October 17, 2011 – Thomas P. Jacobus, General Manager of the U.S. Army Corps of Engineers’ Washington Aqueduct, called for a prohibition on horizontal hydraulic fracturing in the George Washington National Forest because of concern that fracking poses risks to drinking water. The Washington Aqueduct—which provides drinking water to Washington, DC, Arlington County, Virginia, and Falls Church, Virginia—is supplied by the Potomac River, which has its headwaters in the George Washington National Forest that sits atop the Marcellus Shale. Jacobus said, “Enough study on the

technique [hydraulic fracturing] has been published to give us great cause for concern about the potential for degradation of the quality of our raw water supply.

- October 11, 2011 – Charles M. Murray, General Manager of Fairfax Water, called for a prohibition on horizontal hydraulic fracturing in the George Washington National Forest. “Natural gas development activities have the potential to impact the quantity and quality of Fairfax Water’s source water,” Murray wrote. “Downstream water users and consumers will bear the economic burden if drinking water sources are contaminated or the quality of our source water supply is degraded.” Fairfax Water provides drinking water for Fairfax County in Virginia.

- September 7, 2011 – In its draft Supplemental Generic Environmental Impact Statement (SGEIS), the New York State Department of Environmental Conservation (NYS DEC) acknowledged that “there is questionable available capacity” for New York’s public sewage treatment plants to accept drilling wastewater, yet the agency said that it would allow those facilities to accept such waste if the plants meet permitting conditions. The NYS DEC proposed underground injection as one alternative to sewage treatment procession of fracking waste. Although it is a common method of disposal for fracking wastewater, the last significant government study of pollution risks from oil and gas wastewater injection wells occurred in 1989 and found multiple cases of costly groundwater contamination. In subsequent years, studies have continued to link underground injection of drilling wastewater to pollution as well as earthquakes.

- September 2011 – A team led by Theo Colburn of The Endocrine Disruptor Exchange found that 25 percent of chemicals known to be used in fracking fluids are implicated in cancer, 37 percent could disrupt the endocrine system, and 40 to 50 percent could cause

269 New York State Department of Environmental Conservation. (2011). Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program, well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs (6-62, Rep.).
270 New York State Department of Environmental Conservation. (2011). Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program, well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs (6-57 through 6-63, Rep.).
271 New York State Department of Environmental Conservation. (2011). Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program, well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs (6-64, Rep.).
nervous, immune and cardiovascular system problems. The research team also found that more than 75 percent could affect the skin, eyes, and respiratory system, resulting in various problems such as skin and eye irritation or flu-like symptoms.

- August 4, 2011 – As reported by the New York Times, the EPA had alerted Congress in 1987 about a case of water contamination caused by fracking. Its report documented that a shale gas well hydraulically fractured at a depth of more than 4,200 feet contaminated a water supply only 400 feet from the surface.

- May 17, 2011 – The state of Pennsylvania fined Chesapeake Energy Corporation $900,000 for an incident in which improper cementing and casing in one of the company’s gas wells allowed methane to migrate underground and contaminate 16 private drinking water wells in Bradford County.

- May 17, 2011 – A Duke University study documented “systematic evidence for methane contamination of drinking water associated with shale gas extraction.” The study showed that methane levels were 17 times higher in water wells near drilling sites than in water wells in areas without active drilling.

- April 22, 2011 – Describing one of many blowouts, the Associated Press reported on a shale gas well in Canton, Pennsylvania that spewed thousands of gallons of chemical-laced water on farmland and into a stream for two consecutive days before being brought under control.

- April 18, 2011 – As part of a year-long investigation into hydraulic fracturing and its potential impact on water quality, U.S. Representatives Henry Waxman (D-Calif.), Edward Markey (D-Mass.) and Diana DeGette (D-Colo.) released the second of two reports issued in 2011. Their analysis of hydraulic fracturing fluids used by the 14 leading oil and natural gas service companies between 2005 and 2009 found, among

other things, that the companies used more than 650 different products that contained chemicals that are known or possible human carcinogens, regulated under the Safe Drinking Water Act, or listed as hazardous air pollutants under the Clean Air Act. The report also showed that “between 2005 and 2009, the companies used 94 million gallons of 279 products that contained at least one chemical or component that the manufacturers deemed proprietary or a trade secret … in most cases the companies stated that they did not have access to proprietary information about products they purchased ‘off the shelf’ from chemical suppliers. In these cases, the companies are injecting fluids containing chemicals that they themselves cannot identify.” These findings were reported in the New York Times.283

• January 2011 – A team of scientists led by a University of Central Arkansas researcher called attention to the threat posed to surface waters by rapidly expanding shale gas development, noting a lack of data collection accompanying the rush to drill. “Gas wells are often close to surface waters that could be impacted by elevated sediment runoff from pipelines and roads, alteration of stream flow as a result of water extraction, and contamination from introduced chemicals or the resulting wastewater.”284

• January 31, 2011 – As part of a year-long investigation into hydraulic fracturing and its potential impact on water quality, U.S. Representatives Henry Waxman (D-Calif.), Edward Markey (D-Mass.) and Diana DeGette (D-Colo.) reported that “between 2005 and 2009, oil and gas service companies injected 32.2 million gallons of diesel fuel or hydraulic fracturing fluids containing diesel fuel in wells in 19 states.” Furthermore, revealing apparent widespread violation of the Safe Drinking Water Act, the investigation found that no oil and gas service companies had sought—and no state or federal regulators had issued—permits for the use of diesel fuel in hydraulic fracturing.285

• April 29, 2010 – In 2010, the Colorado Oil and Gas Conservation Commission fined Occidental Petroleum Corporation (OXY) USA a record $390,000 for an incident of pollution, discovered in 2008, when its drilling wastes leaked through an unlined pit, contaminated two springs with benzene, and polluted other nearby water sources. In addition, the regulators separately fined OXY USA $257,400 for a nearby case of

pollution, also discovered in 2008, in which a torn liner in a pit caused drilling waste fluids to leak out and contaminate two springs with benzene.286

- June 5, 2009 – A leaking pipe carrying fracking waste in Washington County, Pennsylvania, polluted a tributary of Cross Creek Lake, killing fish, salamanders, crayfish, and aquatic insect life in approximately three-quarters of a mile of the stream.287

- April 26, 2009 – Officials in three states linked water contamination and methane leaks to gas drilling. Incidents included a case in Ohio where a house exploded after gas seeped into its water well and multiple cases of exploding drinking water wells in Dimock, Pennsylvania.288

- November 13, 2008 – ProPublica reported more than 1,000 cases of drilling-related contamination documented by courts and state and local governments in Colorado, New Mexico, Alabama, Ohio, and Pennsylvania.289

- December 15, 2007 – In Bainbridge, Ohio, a gas well that was improperly cemented and subsequently fractured by Ohio Valley Energy Systems Corporation allowed natural gas to migrate outside of the well, causing a home to explode. In addition, 23 nearby water wells were contaminated, two of which were located more than 2,300 feet from the drilling site.290, 291, 292

Inherent engineering problems that worsen with time

Studies consistently show that oil and gas wells routinely leak, allowing for the migration of natural gas and potentially other substances into groundwater and/or the atmosphere. Recent research suggests that the act of fracking itself may induce pathways for leaks. Leakage from faulty wells is an issue that the industry has identified and for which it has no solution.286

292 Ohio Department of Natural Resources, Order Number 2009-17 (Apr. 14, 2009) (see attachments A, B).
According to Schlumberger, one of the world’s largest companies specializing in fracking, about five percent of wells leak immediately, 50 percent leak after 15 years, and 60 percent leak after 30 years. Data from Pennsylvania’s Department of Environmental Protection (DEP) for 2000-2012 show over nine percent of shale gas wells drilled in the state’s northeastern counties leaking within the first five years. Leaks pose serious risks including potential loss of life or property from explosions and the migration of gas or other chemicals into drinking water supplies.

Leaks also allow methane to escape into the atmosphere, where it acts as a more powerful greenhouse gas than carbon dioxide. Indeed, over a 20-year time frame, methane is 86 times more potent a heat accumulator than carbon dioxide. There is no evidence to suggest that the problem of cement and well casing impairment is abating. Indeed, a 2014 analysis of more than 75,000 compliance reports for more than 41,000 wells in Pennsylvania found that newer wells have higher leakage rates and that unconventional shale gas wells leak more than conventional wells drilled within the same time period. Industry has no solution for rectifying the chronic problem of well casing/cement leakage.

- July 9, 2015 – As part of a larger examination of the potential health and environmental impacts of fracking in California, the California Council on Science and Technology (CCST) documented cases of well failures triggered by underground movements that caused well casings to shear. Sheared well casings can allow gas and fluids from the fracking zone to migrate to overlying aquifers. The CCST team identified several mechanisms by which casing shears can occur in California as oil wells age: surface subsidence, heaving, reservoir compaction, and earthquakes. Prolonged drought can also damage the integrity of well casings: as groundwater levels fall, landforms can sink and contribute to casing shear.293

- June 30, 2015 – According to the New York State Department of Environmental Conservation (NYS DEC) Findings Statement, “there is a risk that well integrity can fail, especially over time, and questions have arisen about whether high-volume hydraulic fracturing can cause seismic changes which could potentially result in fracturing fluid migration through abandoned wells or existing fissures and faults. Thus, high-volume hydraulic fracturing could result in significant adverse impacts to water resources from well construction and fracturing fluid migration.”294

- June 4, 2015 – As part of a draft assessment of fracking’s impact on drinking water, the U.S. EPA examined cases of water contamination across the United States and concluded that “construction issues, sustained casing pressure, and the presence of natural faults and

fractures can work together to create pathways for fluids to migrate toward drinking water resources.” Fracking older wells poses additional risks, the draft study notes, because aging itself “can contribute to casing degradation, which can be accelerated by exposure to corrosive chemicals, such as hydrogen sulfide, carbonic acid, and brines” and because many older wells were never designed to withstand the high pressures and stress of fracking operations. The EPA estimates that 6 percent of the 23,000 U.S. oil and gas wells (= 1,380 wells) first fracked in 2009 or 2010 were drilled more than ten years earlier.295

- December 2, 2014 – Problems with structural integrity have been documented in a well at the only hydraulically fractured site in the United Kingdom. Email messages obtained under freedom of information laws reveal that problems with wellbore integrity emerged in April of 2014 and attempts were made to remediate the problem, although nothing was reported at that time to regulators. The drilling company, Cuadrilla Resources, continues to deny that any problems exist with the well, emphasizing that “no leak of fluids” occurred and that “the issue” was resolved during the abandonment process. Cuadrilla had previously been reprimanded for failing to disclose a more minor deformation in the well casing. The well was abandoned at the end of last year, following two earthquakes in 2011, which scientists determined to have been caused by fracking at the site.296

- August 11, 2014 – Researchers affiliated with multiple universities and with the Los Alamos National Laboratory summarized recent field observations of wellbore-integrity failure, concluding that, because at least some well failures are not identified, reported barrier failure rates of 1-10% of wells and reported rates of groundwater contamination of 0.01-0.1% of wells constitute a “lower bound” for possible environmental problems. Citing hydraulic fracturing, as well as temperature and pressure changes, as operations that can induce pathways for leaks, the authors point out that few studies have considered the very-long-term fate (“>50 years”) of wellbore systems. They include “whether unconventional resource development alters the frequency of well integrity failures” as a critical topic for future research.297

- July 30, 2014 – Based on records obtained from Pennsylvania’s Department of Environmental Protection (PA-DEP), Scranton’s Times-Tribune reported that five natural gas wells in Bradford County have leaked methane for years because of persistent casing and cement problems. In the most recent violation, a PA-DEP inspector found combustible gas flowing through vents connected to the cement between layers of pipe. The agency issued a notice of violation for each well, saying combustible gas outside the well’s surface casing violates state regulations. Each of the wells has four layers of steel

casing, but nothing prevents leaking (stray) methane from flowing into the atmosphere. No evidence of water contamination has yet been seen. None of the wells have produced any gas for sale.

• June 30, 2014 – A study published in Proceedings of the National Academy of Sciences by a Cornell University research team projected that over 40 percent of shale gas wells in Northeastern Pennsylvania will leak methane into groundwater or the atmosphere over time. Analyzing more than 75,000 state inspections of more than 41,000 oil and gas wells in Pennsylvania since 2000, the researchers identified high occurrences of casing and cement impairments inside and outside the wells. A comparative analysis showed that newer, unconventional (horizontally fracked) shale gas wells were leaking at six times the rate of conventional (vertical) wells drilled over the same time period. The leak rate for unconventional wells drilled after 2009 was at least six percent, and rising with time. In the state’s northeastern counties between 2000-2012, over nine percent of shale gas wells drilled leaked within the first five years.

The study also discovered that over 8,000 oil and gas wells drilled since 2000 had not received a facility-level inspection. This study helps explain the results of earlier studies that documented elevated levels of methane in drinking water aquifers located near drilling and fracking operations in Pennsylvania and points to compromised structural integrity of well casings and cement as a possible mechanism.

• May 22, 2014 – In a 69-page report, University of Waterloo researchers warned that natural gas seeping from 500,000 wellbores in Canada represents “a threat to environment and public safety“ due to groundwater contamination, greenhouse gas emissions, and explosion risks wherever methane collects in unvented buildings and spaces. The report found that 10 percent of all active and suspended gas wells in British Columbia now leak methane. Additionally, the report found that some hydraulically fractured shale gas wells in that province have become “super methane emitters” that spew as much as 2,000 kilograms of methane a year.

• May 1, 2014 – Following a comprehensive review of evidence, the Council of Canadian Academies identified inherent problems with well integrity as one of its top concerns about unconventional drilling and fracking. According to one expert panel, “the greatest threat to groundwater is gas leakage from wells from which even existing best practices

cannot assure long-term prevention.” Regarding their concerns related to well integrity and cement issues, the panel wrote:

Two issues of particular concern to panel members are water resources, especially groundwater, and GHG emissions. Both related to well integrity…. Natural gas leakage from improperly formed, damaged, or deteriorated cement seals is a long-recognized yet unresolved problem …. Leaky wells due to improperly placed cement seals, damage from repeated fracturing treatments, or cement deterioration over time, have the potential to create pathways for contamination of groundwater resources and to increase GHG emissions.

They further explain:

Cement may crack, shrink, or become deformed over time, thereby reducing the tightness of the seal around the well and allowing the fluids and gases … to escape into the annulus between casing and rock and thus to the surface…. The challenge of ensuring a tight cement seal [will] be greater for shale gas wells that are subjected to repeated pulses of high pressure during the hydraulic fracturing process than for conventional gas wells. This pressure stresses the casing and therefore the cement that isolates the well from surrounding formations repeatedly.

- January 8, 2013 – According to state inspections of all 6,000 wells drilled in Pennsylvania’s Marcellus Shale before 2013, six to ten percent of them leaked natural gas, with the rate of leakage increasing over time. The rate was six percent in 2010 (97 well failures out of 1,609 wells drilled); 7.1 percent in 2011 (140 well failures out of 1,972 wells drilled); and 8.9 percent in 2012 (120 well failures out of 1,346 wells drilled). These data include wells that were cited for leakage violations, and wells that were noted to be leaking by inspectors but which had not been given violations. The NYS DEC forecasts that 50,000 wells could be drilled over the life of the Marcellus Shale play. If they fail at the same rate as wells in Pennsylvania, 4,000 wells would fail and leak in New York almost immediately.

- March 2009 – A study published by the Society of Petroleum Engineers of more than 315,000 oil, gas, and injection wells in Alberta, Canada, found that 4.5 percent of the wells had unintended gas flow to the surface. In one designated area, officials required testing for gas migration outside the well casings in addition to routine testing for gas

304 New York State Department of Environmental Conservation. (2011). Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program, well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs (2-1, Rep.).
leaks within the rings of steel casings (annuli). Within this special testing zone, 15.5 percent of wells (3,205 of 20,725) leaked gas, and the incidence of gas leaks was four times percent higher in horizontal or deviated wells than in vertical wells.\footnote{Watson, T. L., & Bachu, S. (2009). Evaluation of the potential for gas and CO2 leakage along wellbores, Society of Petroleum Engineers. \textit{SPE Drilling & Completion}, 24, 115-126. doi: 10.21.18/106817-PA}

- Autumn 2003 – Schlumberger, one of the world’s largest companies specializing in hydraulic fracturing and other oilfield services, reported in its in-house publication, \textit{Oilfield Review}, that more than 40 percent of approximately 15,500 wells in the outer continental shelf area in the Gulf of Mexico were leaking gas. These included actively producing wells, in addition to shut-in and temporarily abandoned wells. In many cases, the gas leaked through the spaces (annuli) between layers of steel casing that drilling companies had injected with cement precisely to prevent such gas leaks. Leakage rates increased dramatically with age: about five percent of the wells leaked immediately; 50 percent were leaking after 15 years; and 60 percent were leaking after about 30 years.\footnote{Brufatto, C. (2003). From mud to cement - Building gas wells. \textit{Oilfield Review}, 15(3). Retrieved from http://www.slb.com/resources/publications/industry_articles/oilfield_review/2003/or2003aut06_building_gas_wells.aspx} Gas leaks pose serious risks including loss of life from explosions and migration of gas and associated contaminants into drinking water supplies. Leaks also allow the venting of raw methane into the atmosphere where it acts as a powerful greenhouse gas.

- November 2000 – Maurice Dusseault, a specialist in rock mechanics at the University of Waterloo in Ontario, and two co-authors presented a paper published by the Society of Petroleum Engineers, in which they reported that oil and natural gas wells routinely leak gas through cracks in their cement casings, likely caused by cement shrinkage over time and exacerbated by upward pressure from natural gas. According to their paper, in Alberta, it is common for wells to leak natural gas into aquifers. “Because of the nature of the mechanism, the problem is unlikely to attenuate,” they wrote, “and the concentration of the gases in the shallow aquifers will increase with time.”\footnote{Dusseault, M. B., Gray, M. N., & Nawrocki, P. A. (2000). Why oil wells leak: Cement behavior and long-term consequences. \textit{Society of Petroleum Engineers.} Retrieved from http://www.hydrorelief.org/frackdata/references/65704543-Casing-Leaks.pdf}

\section*{Radioactive releases}

\textbf{High levels of radiation documented in fracking wastewater from many shale formations raise special concerns in terms of impacts to groundwater and surface water. Measurements of radium in fracking wastewater in New York and Pennsylvania, from the particularly radioactive Marcellus Shale, have been as high as 3,600 times the United States Environmental Protection Agency’s (EPA) limit for drinking water. One study found toxic levels of radiation in a Pennsylvania waterway even after fracking wastewater was disposed of through an industrial wastewater treatment plant. The disposal of radioactive drill cuttings is an additional concern. A recent study found high levels of radon in buildings located in...}
heavily drilled areas of Pennsylvania, with levels of radon rising since the start of the fracking boom. Unsafe levels of radon and its decay products in natural gas produced from the Marcellus Shale may also contaminate pipelines and compressor stations, as well as pose risks to end-users when allowed to travel into homes. There is no federal oversight and, in some cases, a total lack of state regulations for handling radioactive oil and gas waste. Increasing evidence documents illegal, haphazard dumping of radioactive fracking waste, along with its disposal in municipal landfills not engineered to contain radioactivity. North Dakota alone generates 70 tons per day of radioactive drilling and fracking waste.

- April 27, 2016 – Duke University researchers who studied oil and gas wastewater (“brine”) spills reported that “the water contamination from brine spills is remarkably persistent in the environment, resulting in elevated levels of salts and trace elements that can be preserved in spill sites for at least months to years ….” In addition, radioactivity was elevated in soil and sediment sampled at spill sites, indicating that radium had accumulated in the soils of spill-affected areas. The bigger the spill, the higher the soil radioactivity level. Study author Avner Vengosh told InsideClimate News, “We found even if you take away the spill water… you still left behind the legacy of radioactivity in the soils,” where it can linger for thousands of years.

- March 10, 2016 – Louisville’s Courier-Journal reported on illegal dumping of radioactive oil and gas drilling wastes in two Kentucky landfills. Landfill operators in Greenup and Estill counties were issued violation notices for failing to “accurately characterize the waste for what it was, allowing what’s considered an illegal release of a hazardous material into the environment.” The illegal dumping at the Greenup County landfill alone consisted of 369 tons of radioactive drilling waste.

- February 26, 2016 – Radioactive oil and gas waste from fracking operations in Ohio, Pennsylvania, and West Virginia was illegally sent to Estill County, Kentucky’s Blue Ridge Landfill. The radioactive level of the material that was buried “was at least 340 times more than the amount that is allowed to be buried at a solid waste landfill,” according to WKYT in Lexington. WKYT reported that Estill County leaders would “fight ‘tooth and toenail’ to get the bottom of how low-level radioactive waste ended up in a county landfill,” and do its own testing at the landfill and nearby schools.

• November 23, 2015 – Absence of federal oversight and, in some cases, a total lack of state regulations for handling radioactive oil and gas waste was the topic of a report in *High Country News*, which detailed the regulatory situation in six Western states: Colorado, Idaho, Montana, North Dakota, South Dakota, and Wyoming. North Dakota alone generates an estimated 70 tons a day of radioactive oil and gas waste. “Because the waste is often too radioactive to be disposed of in landfills, it sometimes gets dumped illegally.” Proposed new rules in North Dakota would raise the radioactivity limit for the waste. 312

• April 9, 2015 – A Johns Hopkins Bloomberg School of Public Health study found that levels of radon in Pennsylvania homes—a region with some of the highest indoor radon concentrations in the US—have been rising since 2004, around the time the fracking industry arrived in the state. 313 Radon exposure is the second leading cause of lung cancer worldwide, after cigarette smoking. 314 Researchers found that buildings in counties where the most fracking has taken place in the past decade have had significantly higher radon readings compared with those in low-fracking areas, a difference that did not exist before 2004. Use of well water was associated with 21 percent higher indoor radon concentrations than in buildings using public water sources. This study, the first to define and evaluate the predictors of indoor radon concentrations in Pennsylvania, concluded that radon’s presence was related to geology, water sources, weather, and natural gas drilling. 315

• April 2, 2015 – A team of toxicologists, geochemists, and radiation scientists led by the University of Iowa analyzed the contribution of various naturally occurring radioactive materials (NORM) to the total radioactivity of fracking waste fluids, finding evidence of long-lived, environmentally persistent radioactive decay products. 316 “NORM is emerging as a contaminant of concern in hydraulic fracturing/unconventional drilling wastes, yet the extent of the hazard is currently unknown.” The study determined that previous testing and study methods likely underestimate radioactivity by focusing only on radium. The researchers developed a new method to accurately predict the concentrations of uranium, thorium, and radium and their alpha-emitting progeny, polonium and lead, in fracking wastewater. They found that, under certain conditions, radioactivity increased over time, due to ingrowth of alpha-emitting radioactive progeny of long-lived parent radionuclides such as radium. The authors warned that these decay

products may potentially contaminate recreational, agricultural, and residential areas, and that a more detailed understanding is needed of how radionuclides accumulate in higher organisms. In an accompanying article in *Environmental Health Perspectives*, James Burch, a University of South Carolina epidemiologist who was not involved in the study, said that fracking activities and wastewater disposal, which often take place in close proximity to where people live and work, raise risks for human exposure. “The technology is vastly outpacing what we know about the health effects.”

- May 8, 2014 – A group of leading medical experts and the American Lung Association of the Northeast detailed research and growing concerns about potential health impacts of radon and radium associated with natural gas production and the Marcellus Shale, in particular. High levels of radiation in the Marcellus Shale could pose health threats if high concentrations of radon and its decay products travel with natural gas, a problem compounded by the short distance Marcellus gas could travel in pipelines to people’s homes.

- March 24, 2014 – A team led by toxicology researchers at the University of Iowa identified high levels of radioactivity in fracking wastewater as a significant concern and noted that the testing methods used and recommended by state regulators in the Marcellus Shale region can dramatically underestimate the amount of radioactivity—specifically radium—in fracking wastewater. Results obtained using EPA-recommended protocols can be obscured by the presence of other contaminant mixtures. Regarding the use of EPA protocols with fracking wastewater or other highly saline solutions, Duke University geochemist Avner Vengosh noted, “People have to know that this EPA method is not updated.”

- February 2014 – The Marcellus Shale is known to have high uranium and radium content. According to Mark Engle, USGS geochemist, the concentration of radium-226 can exceed 10,000 picoCuries/Liter (pCi/L) in the shale. Radium-226 has a half-life of 1,600 years. Radium and other naturally occurring radioactive materials (NORM) can be released from shale rock during drilling and fracking and can emerge with flowback and produced waters. It can thus enter the ambient environment and become concentrated in the sludge that results from treatment of flowback water, and in river sediment around water treatment facilities. It can also be found in landfills in which sludge and sediment have been disposed. Some radium can be found in drinking water. Geochemist Avner

Vengosh warned, “Once you have a release of fracking fluid into the environment, you end up with a radioactive legacy.”

- October 2, 2013 – A peer-reviewed study of the impacts of drilling wastewater treated and discharged into a creek by a wastewater facility in western Pennsylvania documented radium levels approximately 200 times greater in sediment samples near the discharge location than in sediment samples collected upstream of the plant or elsewhere in western Pennsylvania. “The absolute levels that we found are much higher than what you allow in the U.S. for any place to dump radioactive material,” one of the authors told Bloomberg News. The pollution occurred despite the fact that the treatment plant removed a substantial amount of the radium from the drilling wastewater before discharging it. The researchers wrote that the accumulation of radium in sludge removed from the wastewater “could pose significant exposure risks if not properly managed.”

- February 2013 – In an analysis of fracking sludge samples from Pennsylvania, researchers “… confirmed the presence of alpha, beta, and gamma radiation in the soil and water in reserve pits located on agricultural land.” Total beta radiation exceeded regulatory guideline values by more than 800 percent, and elevated levels of some of the radioactive constituents remained in a vacated pit that had been drained and leveled. It is imperative, the research team concluded, “that we obtain better knowledge of the quantity of radioactive material and the specific radioisotopes being brought to the earth’s surface from these mining processes.”

- July 26, 2012 – Responding to concern about radon in natural gas produced from the Marcellus Shale, the USGS analyzed ten samples of gas collected near the wellheads of three Pennsylvania gas wells. The agency found radon levels ranging from 1 to 79 picocuries per liter, with an average of 36 and a median of 32. (The highest radon activity reported here would decay to 19.8 pCi/L in approximately a week; by comparison, the EPA’s threshold for indoor air remediation is 4 pCi/L.) Asserting they knew of no previous published measurements of radon in natural gas from the Appalachian Basin, which contains the Marcellus Shale, agency scientists concluded that the number of samples “is too small to … yield statistically valid results” and urged “collection and interpretation of additional data.”

• January 11, 2012 – In its review of the New York State Department of Environmental Conservation’s (NYS DEC) Supplemental Generic Environmental Impact Statement (SGEIS) on high volume fracturing, the EPA expressed concerns about the diffusion of responsibility for the ultimate disposal of radioactive wastes generated by treatment or pretreatment of drilling wastewater. The EPA also raised concerns about the lack of analysis of radon and other radiation exposure. “Who is responsible for addressing the potential health and safety issues and associated monitoring related to external radiation and the inhalation of radon and its decay products?” the EPA asked. “Such potential concerns need to be addressed.”

• September 7, 2011 – The USGS reported that radium levels in wastewater from oil and gas wells in New York and Pennsylvania, including those in the Marcellus Shale, “have a distinctly higher median … than reported for other formations in the Appalachian Basin, and range to higher values than reported in other basins.” The median level of radium found in Marcellus Shale wastewater in New York, 5,490 pCi/L, is almost 1,100 times the maximum contaminant level for drinking water, which is five pCi/L. In other words, if a million gallons of Marcellus Shale wastewater contaminated with the median level of radium found in New York were to spill into a waterway, 1.1 billion gallons of water would be required to dilute the radium to the maximum legal level. (The EPA’s health-based goal for radium in drinking water is zero.) Over time, radium naturally decays into radioactive radon gas. Thus, higher radium levels also suggest that higher levels of radon may also be present in natural gas produced from the Marcellus Shale.

• February 27, 2011 – The New York Times reported on the threat to New York’s drinking water from Pennsylvania drilling waste due to the presence of chemical contaminants, including high levels of radioactivity. The investigation found that sewage treatment plants were neither testing for nor capable of removing that radioactivity, which was subsequently discharged into waterways that supply drinking water, and that, in some cases, wastewater contained radium levels that were hundreds of times higher than the drinking water standard. Drillers sent some of this waste to New York State for disposal even though, as the article noted, EPA scientists had warned the state about this very problem in a December 2009 letter that advised against sewage treatment plants accepting drilling waste with radium levels 12 or more times as high as the drinking water standard.

http://water.epa.gov/drink/contaminants/basicinformation/radionuclides.cfm
• 2008-2009 – The New York State DEC found that wastewater from 11 of 13 vertical wells drilled in New York’s Marcellus Shale in 2008 and 2009 contained radium levels ranging from 400 times to nearly 3,400 times EPA’s safe level limit for radium in drinking water. These figures later informed the 2011 study of radium in drilling wastewater conducted by the USGS.329

Occupational health and safety hazards

Drilling and fracking jobs are among the most dangerous jobs in the nation with a fatality rate that is five times the national average and shows no sign of abating. Occupational hazards include head injuries, traffic accidents, blunt trauma, burns, inhalation of hydrocarbon vapors, toxic chemical exposures, heat exhaustion, dehydration, and sleep deprivation. An investigation of occupational exposures found high levels of benzene in the urine of wellpad workers, especially those in close proximity to flowback fluid coming up from wells following fracturing activities. Exposure to silica dust, which is definitively linked to silicosis and lung cancer, was singled out by the National Institute for Occupational Safety and Health as a particular threat to workers in fracking operations where silica sand is used. At the same time, research shows that many gas field workers, despite these serious occupational hazards, are uninsured or underinsured and lack access to basic medical care.

• April 27, 2016 – According to the 2016 edition of the AFL-CIO report, Death on the Job: The Toll of Neglect, the fatality rate for workers in the oil and gas extraction industries is nearly five times the national average, and the states with prominent oil and gas industries are among the most dangerous states to work. In addition, the report emphasized, the industry has been exempted from some critical Occupational Safety and Health Administration (OSHA) standards, including that for carcinogenic benzene. The report also emphasized the danger of silica dust exposure in hydraulic fracturing-related work and the significant delays in controlling workers’ exposures in these operations. “Oil and gas extraction is subject to OSHA general industry and construction regulations, none of which are designed to address the particular safety and hazards in the oil and gas industry…. The escalating fatalities and injuries in the oil and gas extraction industry demand intensive and comprehensive intervention,” the report stated.330

• April 21, 2016 – According to an updated report from the Bureau of Labor Statistics, fatal work injuries in oil and gas extraction industries in 2014 reached a new high of 144.331 The final 2015 data are scheduled for release on December 16, 2016.

329 New York State Department of Environmental Conservation. (2011). Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program, well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs (5-133, 5-141, 7-60, Appendix 12, Appendix 13, Rep.).
• February 29, 2016 – *Inside Energy*’s report on high rates of hydrocarbon vapor poisoning among oilfield workers noted that an outdated reliance on manual measurements rather than automated monitoring contributes to ongoing toxic exposures of workers. Under federal oil and gas regulations, oil companies are effectively required to send workers “up on oil and gas tanks to manually measure crude oil, putting them at risk.” The report explained that the Bureau of Land Management (BLM) allows just one kind of automated measurement. The method is expensive and uncommonly used: “there are only 1,500 in use, compared to more than 83,000 oil tanks on federal land. By being so inflexible, BLM’s outdated rules make it very hard to use safer oil measuring devices while making manual oil tank measurement—which endangers workers—the most viable option for companies.”

• February 19, 2016 – The fatal injuries of a backhoe operator who struck and hit an unmarked, high-pressure gas line in July 2015 prompted an investigation by *StateImpact* in Pennsylvania. The news group noted that “there are no local, state or federal rules on how deep the lines should be buried underground, or even if they’re buried at all. There are no standards for building and maintaining the lines. They don’t have to be marked. And the operator of the line doesn’t have to participate in PA One Call [a statewide communications system for preventing damage to underground facilities], which led to the fatality in Armstrong County.”

• January 15, 2016 – In a publication in Centers for Disease Control’s *Morbidity & Mortality Weekly Report*, researchers urged local and state epidemiologists and medical examiners to not overlook hydrocarbon exposure as an underlying cause of death in gas and oil field workers. “Health and safety professionals need to recognize and act on nonfatal warning signs and symptoms, such as dizziness, confusion, immobility and collapse in oil and gas workers who might have been exposed to high concentrations of [hydrocarbon gas vapors] and to [oxygen]-deficient atmospheres.” Only three of nine deaths that occurred between 2010 and 2015 in the oil and gas fields west of Appalachia were ruled by coroners to have resulted from exposure to gas vapors, although all nine had opened hatches of storage tanks and were exposed to hydrocarbon vapors and oxygen-deficient air. The *Pittsburgh Post-Gazette* quoted emeritus professor at the University of Pittsburgh Bernard Goldstein saying, “Occupational health experts also suspect that some deaths involving fires, falls, crashes and mishandling of equipment

have resulted from faulty judgement or ‘wooziness’ associated with hydrocarbon vapor exposure … [b]ut that underlying factor rarely shows up in fatality reports.”

- December 14, 2015 – As reported in the Guardian, the suicide rate in the Canadian province of Alberta spiked by 30 percent spike in the first half of 2015, possibly linked to the boom-and-bust cycle of the fracking industry. At the time of reporting, 40,000 jobs had been lost in Alberta since the drop in oil prices in late 2014. Mental health professionals interviewed for the report included Edmonton social worker Leonard McEwan, who specializes in clinical crises intervention and whose patients include those directly or indirectly employed in the oil fields, noticed a sharp increase in suicides after the recent plunge in oil prices. As revealed in the investigative report, three in every four Alberta suicides are male and the vast majority are under 55. Gladys Blackmore, executive director of a mental health program that targets those employed in the industry, believes that young, male workers “living high-risk lifestyles, often in work camps, where they ‘fly-in/fly-out’ for up to 24 days at a time” are particularly vulnerable.

- November 7, 2015 – The Denver Post reported on a “new federal database that was developed to more precisely capture the deadly nature of oil and gas extraction.” For Colorado, the national Fatalities in Oil and Gas Extraction (FOG) database contained two additional oil and gas worker deaths for 2014 than did the Bureau of Labor Statistics. "‘We knew from the Bureau of Labor Statistics data about the basics of what’s killing workers,’ said Kyla Retzer, an epidemiologist who led the effort to compile the FOG report. ‘We just wanted to be more in-depth in finding out what were the types of operations and equipment were involved in these deaths.’"

- November 4, 2015 – San Antonio’s Express-News Editorial Board called for specific actions to address Texas’s status “a national leader in oil field deaths.” The Board wrote that federal fines are too low and unchanged since 1991 and that there is no Level 1 trauma center south of San Antonio near the region’s oil- and gas-producing counties.

• September 17, 2015 – The Bureau of Labor Statistic reported that the number of fatal work injuries in oil and gas extraction industries rose 27 percent between 2013 and 2014.339

• September 15, 2015 – E&E Publishing’s \textit{EnergyWire} reported on the potentially deadly risk of exposure to vapors from oil and gas field storage tanks, including deaths that were officially attributed to cardiac arrest, though inhalation of toxic gases and lack of oxygen played a role, as demonstrated in subsequent litigation. The reporter gave detail on the circumstances of several of the deaths, including that of a long-haul trucker who had heart disease and was diabetic, and whose death was classified as natural. “But he didn't suffer a heart attack that day, or a diabetic episode. Medical experts said he likely wouldn’t have died outside the toxic atmosphere on the catwalk.” A Denver cardiologist testified that “there was no other reason for him to have died that day.”340 (NIOSH has subsequently targeted outreach to medical examiners to improve their recognition of this hazard and potential cause of death; see above.)

• September 5, 2015 – In partnership with Rocky Mountain PBS I-News, \textit{The Durango Herald} reported on the oil and gas industry’s varied practices in their handling of silica sand with regard to worker protection. In 2012 the National Institute for Occupational Safety and Health issued an alert concerning workers at fracking sites being exposed to silica dust at levels that exceeded occupational exposure limits. Industry has resisted updates to the standards. The \textit{Herald} report addressed technological and work practice controls to reduce exposure on the part of some companies. Still, authors wrote, silicosis “can hide for a decade before causing symptoms. No one knows how many oil and gas workers may have already been exposed.”341

• June 29, 2015 – An investigation by the Center for Public Integrity (CPI) found that lung-damaging silica is not sufficiently regulated to prevent silicosis (which is incurable and has no effective treatment) or lung cancer in the workplace. Rules governing occupational exposure to silica dust are far outdated, and advocacy efforts to tighten them are four decades old. At particular risk, say the authors, are workers in oil and gas fields where silica sand is used in fracking operations. Citing research by NIOSH, the CPI team noted that nearly 80 percent of the air samples on the well pads were above the recommended exposure limit for silica dust.342

June 15, 2015 – *EnergyWire* examined issues surrounding exposure to crystalline silica from frac sand mining, which is a health concern to those living near mines and to those working in the industry. Families living near industrial sand mining reported that their health has been compromised by sand mine development and are concerned that companies are not properly monitoring their extraction sites. The article noted that the Occupational Safety & Health Administration (OSHA) is working on a new exposure rule for workers that OSHA estimates would save nearly 700 lives and prevent 1,600 new cases of silicosis annually. The oil and gas industry is fighting the rule because of the cost associated with complying with a more stringent permissible exposure limit. Crispin Pierce, public health researcher at the University of Wisconsin in Eau Claire, is in the midst of a three-pronged research project to look at the industry’s air effects. Among other findings, his project’s air monitors around sand plants have found consistently finding higher readings than the Wisconsin Department of Natural Resources’ reported regional values.\(^{343}\)

June 15, 2015 – In an update, NIOSH noted that silicosis death rates are rising again, reversing an earlier, decade-long decline. In the list of job tasks with known high silica exposures, the update named hydraulic fracturing of gas and oil wells. These results are particularly concerning in light of earlier research showing significant under-detection of silicosis among deceased workers with known exposure to silica dust.\(^{344}\)

June 13, 2015 – Reporting on North Dakota’s fracking boom, the Center for Investigative Reporting found that the major oil companies have largely written the rules governing their own accountability for accidents. Deeply entrenched corporate practices and weak federal oversight, according to the report, have led to high injury and death rates and a shift of assigned responsibility to others. Using data from U.S. and Canadian regulators, the journalists verified 74 on-the-job deaths among workers in Bakken Shale drilling and fracturing operations since 2006. The actual number of deaths is likely higher than currently reported because federal regulators do not have a systematic way to record oil- and gas-related deaths, and OSHA does not include certain fatalities, including those of independent contractors. The report concluded that there was too little oversight from OSHA, that laws to protect workers were outdated, and that there was a culture of self-regulation by the industry.\(^{345}\)

May 29, 2015 – The Centers for Disease Control and Prevention published statistics on work-related fatalities during the fracking boom. The occupational fatality rate among U.S. oil and gas industry extraction workers between 2003 and 2013 remained an average of seven times higher than among U.S. workers in general (25.1 versus 3.7 deaths per 100,000 workers per year). Within this 11-year period, the industry doubled the size of its

workforce and increased drilling rigs by 71 percent. The number of occupational deaths increased 27.6 percent, with a total of 1,189 deaths, but it did not increase as much as the number of workers, resulting in an overall decrease in the fatality rate of 36.3 percent. Transportation accidents and contact with objects and equipment were the most frequent fatal events. Evidence suggests that the increased use of automated technologies on drilling rigs may be contributing to the decline in death rates.346

- April 22, 2015 – The AFL-CIO published data for job injuries, illnesses and deaths in a national and state-by-state profile of worker safety and health in the United States, presenting comparisons by state and industry. For the third year in a row, North Dakota had the highest on-the-job fatality rate in the nation: 14.9 deaths per 100,000 workers, a rate that is more than four times the national average, and which has more than doubled since 2007. The fatality rate in the mining and oil and gas extraction sector in North Dakota was 84.7 per 100,000, which is nearly seven times the national fatality rate of 12.4 per 100,000 in this industry.347, 348

- April 10, 2015 – In a study that was inclusive of fracking-based extraction but not specific to it, NIOSH researchers updated their investigation into the sudden deaths of nine oil and gas extraction workers found near hatches where hydrocarbons were stored. All nine victims died between 2010 and 2014 and were unobserved or working alone at the time of their deaths. The first report attributed the fatalities to “inhalation of volatile petroleum hydrocarbons.”349 The update noted that when workers open hatches on production tanks, a plume of hydrocarbon gases and vapors can be rapidly released due to high internal pressure. Exposure to high concentrations of these low-molecular-weight hydrocarbons creates asphyxiations and explosive hazards and can have narcotic effects, resulting in disorientation, dizziness, and light-headedness. The authors cited reports of other sudden deaths following butane and propane inhalation, exposure to which can induce irregular heartbeat, insufficient oxygen supply, and respiratory depression.350 As reported by the Denver Post, most of the death certificates listed natural causes or heart failure as the cause likely because medical examiners can easily miss signs of toxic inhalation during a routine autopsy. The nomadic nature of the industry presents obstacles to proper training in tank handling techniques.351

349 NIOSH. (2015, March 15). Suspected inhalation fatalities involving workers during manual tank gauging, sampling, and fluid transfer operations on oil and gas well sites, 2010-2014. \textit{CDC Workplace Safety & Health Topics}. Retrieved from http://www.cdc.gov/niosh/topics/log/data.html#_ftn1
recommendations for worker protections, including respiratory protection training and engineering controls for remote gauging and venting.352

- February 15, 2015 – Burn injuries among North Dakota workers surged to more than 3,100 over the past five years as the area has become the epicenter of a massive drilling and fracking boom, as reported by the \textit{Star Tribune}. Despite the flammability of Bakken crude oil and the danger of oil rig work, North Dakota has no burn centers, and burn victims must be transported out of state, typically to the Minneapolis-St. Paul area some 600 miles away. The article also covered the severe, debilitating, costly, and sometimes fatal aspects of these occupational injuries.353

- February 13, 2015 – NIOSH reported that while silicosis death rates declined between 2001 and 2010, silicosis deaths were still occurring among young persons aged 15 to 44 years old, indicating extremely high exposures to respirable silica dust. Among emerging new settings that put workers at risk for silicosis, the authors named oil and gas extraction industry workers.354

- January 14, 2015 – The \textit{Charleston Gazette-Mail} reported that, due to an increase in workplace deaths that has accompanied the boom in natural gas drilling and production from the Marcellus Shale fields in Northern West Virginia, the Governor there has called for a study aimed at reversing that trend. “Between 2009 and 2013, as the industry boomed in the Marcellus region, 15 natural gas workers died on the job in West Virginia, according to the federal data. During the previous five-year period, from 2004 to 2008, three workers died in West Virginia’s oil and gas industry, according to the [U.S. Bureau of Labor Statistics].”355

- January 12, 2015 – Oil and gas production employs less than one percent of the U.S. workforce, but in the past five years it has had more than ten percent of all workplace fatalities from fires and explosions. A review by \textit{EnergyWire} of federal labor statistics last year found the industry had more deaths from fires and explosions than any other private industry. The only “industry” with more fire and explosion fatalities than oil and gas was firefighting, the report stated. These statistics are inclusive of deaths related to fracking operations but are not specific to them.356

December 26, 2014 – A report in the *Houston Chronicle* illustrated the difficulties oil and gas workers encounter when injured on the job. In one case a worker fell from a rig, injuring his head. Supervisors did not record the accident. After he became too ill to work, he was shifted to other jobs and soon after, sent home. His daughter filed a Worker’s Compensation claim, which was denied for “late reporting, no knowledge of injury by employer and no medical reports.” The article noted that oilfield injuries are generally undercounted nationally. These include injuries related to drilling and fracking operations as well as those linked to other techniques of extraction.\(^{357}\)

December 4, 2014 – Benzene, a naturally occurring component of crude oil and natural gas, is a known carcinogen, with no known threshold of safety. Although the American Petroleum Institute in 1948 stated that “the only absolutely safe concentration … is zero,” the organization since then undertook an intensive campaign to combat strict exposure limits. An investigation by the Center for Public Integrity found that, “[f]or decades, the petrochemical industry spent millions on science seeking to minimize the dangers of benzene. … Taken together, the documents—put in context by interviews with dozens of lawyers, scientists, academics, regulators and industry representatives—depict a ‘research strategy’ built on dubious motives, close corporate oversight and painstaking public relations.”\(^{358}\)

December, 2014 – In a report intended to inform employers and workers about the known hazards that result from hydraulic fracturing and flowback operations, OSHA noted that there is no publicly available worker injury, illness, or fatality data specific for fracking or flowback operations. At the same time, more workers are exposed to fracking- and flowback-related hazards due to the huge increase in the numbers of these operations over the past ten years. “In light of this, OSHA has determined that additional information concerning hydraulic fracturing and flowback operations hazards should be provided to educate and protect workers.”\(^{359}\)

November 11, 2014 – University of Wisconsin toxicologist Crispin Pierce documented super-fine dust drifting from facilities that process silica sand for fracking operations. Pierce and his team detected silica dust in ambient air near frac sand operations at levels that exceed EPA air quality standards by a factor of four. Occupational exposure to respirable crystalline silica is linked in adult workers to silicosis, lung cancer, and pulmonary tuberculosis. Health threats to the general public from frac sand-related air pollution have not yet been studied directly. One of the first investigations of silica dust

\(^{359}\) U.S. Department of Labor, Occupational Safety and Health Administration. (2014). Hydraulic fracturing and flowback hazards other than respirable silica. OSHA 3763-12 2014.
levels in the community environment, the Wisconsin study will appear next year in the *National Journal of Environmental Health.*360

- November 11, 2014 – A high-pressure water line ruptured, killing one worker and seriously injuring two others during the hydraulic fracturing of an oil well in Weld County, Colorado.361

- October 6, 2014 – Toxicologist Peter Thorne, chair of University of Iowa’s Department of Occupational and Environmental Health, warned the Winneshiek County Board of Supervisors about potential community impacts and cancer risks of silica exposure from sand used for fracking operations. Thorne’s ongoing investigation, which involves air sampling, risk assessments, and inhalation toxicology studies, focuses on the public health hazards of mining, processing, and storing sand. His team has documented spikes in silica particulate matter related to the transport of the silica sand by rail. The study aims to determine if mining poses an “unacceptable exposure” to the public and quantify the level of risk. For silica-exposed workers, NIOSH continues to identify needed health protections. Thorne noted, “Workers handling materials should be using respirators, but most are not.”362

- September 25, 2014 – The Civil Society Institute’s Boston Action Research, in cooperation with Environmental Working Group and Midwest Environmental Advocates, issued a report on the hazards of silica mining. The report noted that frac sand mining is expanding rapidly in the United States and poses a little-understood threat to public health, the environment, and local economies. Given the pace of the drilling and fracking boom, silica extraction could spread to a dozen other states with untapped or largely untapped sand deposits, including Illinois, Maine, Massachusetts, Michigan, Missouri, New York, North Carolina, South Carolina, Pennsylvania, Tennessee, Vermont, and Virginia. The *International Business Times* published a summary of the findings.363, 364

- August 29, 2014 – In a peer-reviewed study, NIOSH partnered with oil and gas operators and service companies to evaluate worker exposures to, and internal uptake of, volatile organic chemicals at six sites in Colorado and Wyoming where wells were being

prepared for production. The study found benzene in the urine of well pad workers. Benzene is “naturally present in flowback fluids and the time spent working around flowback and production tanks … appears to be the primary risk factor for inhalation exposures.” In some cases, airborne concentrations of benzene exceeded the NIOSH Recommended Exposure Limit concentrations and, in a few instances, the American Conference of Governmental Industrial Hygienists’ Threshold Limit Value, “when workers performed work tasks near a point source for benzene emissions.”

- July 29, 2014 – As part of an investigation into the health impacts of drilling and fracking on animal health, veterinarian Michelle Bamberger and Cornell biochemist Robert Oswald, published an interview with a twenty-year oil and gas industry worker about his experiences and worker safety. His account included injuries, 16-hour workdays, fatigue, exposure to chemicals, and inadequate health and safety training. “No one out there tells you about stuff that has latency. That is the last thing they are going to do is tell you that something that you are handling will take you out in 20 years or 10 years or cause you some kind of ailment, or you can potentially drag this home to your family.”

- July 14, 2014 – As part of an analysis of safety and research needs associated with drilling and fracking, researchers at the Colorado School of Public Health and the College of Health Sciences at the University of Wyoming documented high injury and on-the-job mortality rates among gas and oilfield workers. The occupational fatality rate was 2.5 times higher than that of the construction industry and seven times higher than that of general industry. By contrast, injury rates were lower than the construction industry, suggesting that injuries are underreported. Researchers documented crystalline silica levels above occupational health standards and identified the existence of other hazards, including particulate matter, benzene, noise, and radiation. The team called for exposure assessments for both chemical hazards and physical hazards that lead to occupational illness (noise, radioactivity); screening and surveillance systems to assess incidence and prevalence of occupational illness; industry/academic collaboration to conduct occupational epidemiologic studies; and assessment of the effectiveness of industry interventions to reduce exposures.

- July 2014 – The British labor journal Hazards identified health concerns in the drilling and fracking industry: increased rate of death on the job, toxic releases, silica exposure, and exposure to hydrocarbons and endocrine disruptors. The union that organizes the construction, rig, and transport workers, on which fracking would rely, agreed at its July 2014 national conference to lobby for a moratorium on fracking because “[d]elegates want union members to be made aware of the dangers of fracking and be advised not to

work on fracking sites.”

- June 29, 2014, and August 31, 2014 – An initial report and follow-up analysis in The Columbus Dispatch examined fire hazards at well pads. In one notable case, malfunctioning hydraulic tubing allowed a well pad fire in Monroe County, Ohio to spread rapidly, prompting evacuations. Local firefighters had neither the correct equipment nor did they know the chemicals they were trying to extinguish. One firefighter was treated for smoke inhalation. \(^{369, 370}\)

- May 19, 2014 – Underscoring the dangerous nature of chemicals used in fracking operations, NIOSH reported that at least four gasfield workers have died since 2010 from acute chemical exposures during flowback operations and warned that flowback operations can “result in elevated concentrations of volatile hydrocarbons in the work environment that could be acute exposure hazards.” The agency further noted that such volatile hydrocarbons “can affect the eyes, breathing, and the nervous system and at high concentrations may also affect the heart causing abnormal rhythms.”\(^{371, 372}\)

- May 16, 2013 – A NIOSH study revealed that worker exposure to crystalline silica dust from sand used in fracking operations exceeded “relevant occupational health criteria” at all eleven tested sites, and the magnitude of some exposures exceeded NIOSH limits by a factor of 10 or more. “[P]ersonal respiratory protection alone is not sufficient to adequately protect against workplace exposures.” Inhalation of crystalline silica can cause incurable silicosis, lung cancer, chronic obstructive pulmonary disease, kidney disease and autoimmune diseases.\(^{373}\) Although community exposures distant from mines are possible, there are no federal or state standards for silica in ambient air. A first-ever study on public health risks from frac sand is now in progress.\(^{374}\)

- May 8, 2014 – A report by the AFL-CIO found that the fracking boom has made North Dakota the most dangerous state for U.S. workers—with a fatality rate five times higher than the national average—and that North Dakota’s fatality rate has doubled since 2007. The AFL-CIO called North Dakota “an exceptionally dangerous and deadly place to

work.” U.S. Secretary of Labor Thomas E. Perez called the rising rate of workplace deaths suffered in the oil and gas sector “unacceptable.”

- April 24, 2014 – A University of Texas San Antonio report commissioned by the Methodist Healthcare Ministries found that many oil and gas field workers in the Eagle Ford Shale are uninsured or underinsured and that “the most noticeable health impacts so far are work-related illnesses and injuries: heat exhaustion, dehydration, sleep deprivation, exposure to oil and gas spills and accidents.” The study also noted that oil and gas production has put strain on healthcare facilities.

- April 10, 2014 – West Virginia University researcher Michael McCawley reported that some of the nation’s highest rates of silicosis are in heavily drilled areas within the Northern Panhandle of West Virginia and southwestern Pennsylvania. A disease that hardens the lungs through inflammation and development of scar tissue, silicosis is entirely attributable to exposure to silica dust, a known occupational hazard at drilling and fracking operations. Two years earlier, OSHA and NIOSH issued a joint “Hazard Alert” to warn fracking workers of the health hazards of exposure to silica dust, including silicosis.

- February 25, 2014 – A year-long investigation by the Houston Chronicle found that fracking jobs are deadly, with high fatality rates and high rates of serious injury. Within just one year in Texas, 65 oil and gas workers died, 79 lost limbs, 82 were crushed, 92 suffered burns and 675 broke bones. From 2007 to 2012, at least 664 U.S. workers were killed in oil and gas fields.

- December 27, 2013 – National Public Radio (NPR) reported spiking rates of fatalities related to oil and gas drilling operations, which had increased more than 100 percent since 2009. NPR noted that in the previous year, 138 workers were killed on the job, making the fatality rate among oil and gas workers nearly eight times higher than the average rate of 3.2 deaths for every 100,000 workers across all industries.

• October 30, 2012 – In a policy statement, the American Public Health Association (APHA) asserted that, high volume horizontal hydraulic fracturing (HVHF) “poses potential risks to public health and the environment, including groundwater and surface water contamination, climate change, air pollution, and worker health.” The statement also noted that the public health perspective has been inadequately represented in policy processes related to HVHF. The policy statement added:

[H]ydraulic fracturing workers are potentially exposed to inhalation health hazards from dust containing silica. There may also be impacts on workers and communities affected by the vastly increased production and transport of sand for HVHF. Inhalation of fine dusts of respirable crystalline silica can cause silicosis. Crystalline silica has also been determined to be an occupational lung carcinogen.

• 2005 – A researcher at Stanford University examined hazards associated with oil and gas extraction from exposure to radiation and determined that inhalation of high levels of radon gas is a serious concern to workers and those living nearby. Because the boiling point of radon lies between those of propane and ethane, gaseous radon (222Rn) will concentrate in ethane and propane fractions. “Elevated Rn activity concentration values have been measured at several processing plant sites…. It is well known that the radiological impact of the oil and gas-extracting and processing industry is not negligible.”

• May 9, 2003 – A New York Medical College study re-evaluated the chest X-rays of patients with exposure to silica who died from various respiratory problems and found that more than eight percent had undiagnosed silicosis. The study suggested that occupational lung disease may be undercounted in high-risk occupations. The authors of this study said that improved OSHA standards, with ongoing exposure monitoring and medical surveillance, would significantly improve the recognition of cases and justify more stringent preventive measures to reduce exposure. They further noted that practitioners need skills in taking an occupational exposure history. Although ten years have passed since this study was published, both recommendations have yet to be implemented.

Public health effects, measured directly

By several measures, evidence for fracking-related health problems is emerging across the United States. In Pennsylvania, as the number of gas wells increase in a community, so do

rates of hospitalization. Drilling and fracking operations are correlated with elevated motor vehicle fatalities (Texas), asthma (Pennsylvania), self-reported skin and respiratory problems (southwestern Pennsylvania), ambulance runs and emergency room visits (North Dakota), infant deaths (Utah), birth defects (Colorado), high risk pregnancies (Pennsylvania), premature birth (Pennsylvania), and low birthweight (multiple states). Benzene levels in ambient air surrounding drilling and fracking operations are sufficient to elevate risks for future cancers in both workers and nearby residents, according to studies. Animal studies show that two dozen chemicals commonly used in fracking operations are endocrine disruptors that can variously disrupt organ systems, lower sperm counts, and cause reproductive harm at levels to which people can be realistically exposed.

• July 18, 2016 – Living near fracking operations significantly increases asthma attacks, according to a Johns Hopkins University study of 35,000 medical records of people with asthma in north and central Pennsylvania, from 2005 to 2012. The data show that those who live near a higher number of, or larger, active gas wells were 1.5 to 4 times more likely to suffer from asthma attacks compared to those who live farther away, with the closest group having the highest risk. There was increased risk in all three types of exacerbations defined: mild (new oral corticosteroid medication order), moderate (emergency department encounter), or severe (hospitalization). In addition, researchers identified increased risk during all four phases of well development: pad preparation, drilling, stimulation (fracking), and production. The study was praised for its “rigorous research methods,” by a scientist not part of the team.

• February 9, 2016 – An exploratory study of hospitalization rates for three study areas in Queensland, Australia showed rates for specific types of hospital admissions increased more quickly in a coal seam gas study area than in other study areas (a coal mining area and a rural/agricultural area). Coal seam gas is the methane trapped in pores and fractures in underground coal deposits; its exploitation is a form of unconventional natural gas development. A portion of coal seam gas extraction uses fracking. This preliminary study found the strongest link between increased hospitalization rates over time in a coal seam gas area to be for the category of ‘Blood/immune’ diseases.

• October 14, 2015 – Using an animal model, an interdisciplinary research team measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations, finding that 23 of them “can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically.” Further, the researchers tested prenatal exposures to the chemicals and found effects on multiple organs, including

adverse reproductive effects on the matured offspring. This study is the first to demonstrate that endocrine-disrupting chemicals, which are commonly used in fracking operations, can harm the reproductive health of mice, at levels of exposure that are realistic for humans. The study’s senior author told ScienceDaily, “In addition to reduced sperm counts, the male mice exposed to the mixture of chemicals had elevated levels of testosterone in their blood and larger testicles. These findings may have implications for the fertility of men living in regions with dense oil and/or natural gas production.”

- October 8, 2015 – Pregnant women who live near active fracking operations in Pennsylvania were at a 40 percent increased risk of giving birth prematurely and at a 30 percent increased risk for having obstetrician-labeled high-risk pregnancies, according to a study by Johns Hopkins Bloomberg School of Public Health and other researchers. High-risk pregnancies were those that included hypertension, high pre-pregnancy body mass index, and asthma. The study used data from the Geisinger Health System on 9,384 pregnant women and their 10,496 newborns between January 2009 and January 2013; Geisinger covers 40 counties in north and central Pennsylvania. Researchers developed an index for proximity to fracking wells based on distance from the women’s homes, stage of drilling and depth of wells dug, and the amount of gas that was produced at those wells during the pregnancies. The highest-activity quartile had the highest rates of premature births and high-risk pregnancies.

- July 22, 2015 – Using a mammal model, New York University School of Medicine scientists, together with other U.S. and Chinese researchers, demonstrated cancerous changes linked to exposure to wastewater from Marcellus fracking operations. Their study also documented elevated levels of barium and strontium in exposed animal cells. The wastewater studied originated in Pennsylvania and was stored for a time to allow radioactivity and levels of short-lived volatile organic compounds to decline. The results suggest that “even aged flow back water could pose substantial health threats to exposed humans.”

- July 15, 2015 – A study by University of Pennsylvania and Columbia University researchers found that drilling and fracking activity was associated with increased rates of hospitalization in Pennsylvania. During a period of dramatic increase in drilling and fracking activity between 2007 and 2011, inpatient prevalence rates surged for people

living near shale gas wells. Cardiology inpatient prevalence rates were significantly associated with number of wells per zip code and their density, while neurology inpatient prevalence rates were significantly associated with density of wells. Hospitalizations for cancer, skin conditions, and urological problems also rose significantly. During the same time period, no such increase in health problems was observed in a control Pennsylvania county without any drilling and fracking activity. In communities with the most wells, the rate of cardiology hospitalizations was 27 percent higher than in control communities with no fracking. “While the clinical significance of the association remains to be shown, [fracking] has just begun in Pennsylvania, and thus observing a significant association over this short time is striking…. Our study also supports the concept that health care utilization should be factored into the value (costs and benefits) of hydraulic fracturing over time.”392 In a related \textit{Newsweek} story, lead researcher Reynold Panettieri, Jr. said, “At this point, we suspect that residents are exposed to many toxicants, noise and social stressors due to hydraulic fracturing near their homes and this may add to the increased number of hospitalizations.”393

- July 9, 2015 – As part of a scientific assessment of well stimulation treatments, including fracking, the California Council on Science and Technology studied the potential impacts of well stimulation on human health in California. The risk factors directly attributable to well stimulation stem largely from the use of a very large number and quantity of stimulation chemicals. The unknown number and toxicity of chemicals that are mixed together in well stimulation fluids made it difficult to fully quantify risk to the environment and to human health, but the study highlighted the potential health risks from exposure to fracking-related air pollution for the people of Los Angeles, 1.7 million of whom live or work within one mile of an active oil or gas well.394 Jane Long, co-author, said, “officials should fully understand the toxicity and environmental profiles of all chemicals before allowing them to be used in California’s oil operations,” according to the \textit{Los Angeles Times}.395

- June 22, 2015 – A longtime midwife reported her personal analysis of an ongoing spike in infant deaths, miscarriages, and placental abnormalities in Utah’s Uintah Basin that has followed the advent of drilling and fracking activity there and appears linked to air pollution episodes.396

• June 3, 2015 – A University of Pittsburgh study linked fracking to low birthweight in three heavily drilled Pennsylvania counties. The more exposure a pregnant woman had to gas wells, the higher her risk for a smaller-than-normal baby. Exposure was determined as proximity and density of wells in relation to the residence of the pregnant woman. Compared to mothers whose homes had the fewest surrounding gas wells, mothers whose homes were nearest to a high density of wells were 34 percent more likely to have babies who were “small for gestational age,” meaning they weighed significantly less than expected for the number of weeks of pregnancy. Although the study did not investigate mechanisms, researchers identified air as the likely route of exposure. They supported this argument by referencing another study done in Western Pennsylvania where airborne particulate pollution correlated with low birth weight and by noting that particulates are established shale gas infrastructure emissions.397,398 Low birth weight is a leading cause of infant mortality.

• March 3, 2015 – A follow-up study of 21 case studies from five states found that the distribution of symptoms in animals and humans affected by nearby fracking operations was, since 2012, unchanged for humans and companion animals. In food animals, reproductive problems decreased over time while respiratory problems and growth problems increased. “This longitudinal case study illustrates the importance of obtaining detailed epidemiological data on the long-term health effects of multiple chemical exposures and multiple routes of exposure that are characteristic of the environmental impacts of unconventional drilling operations.”399

• March 3, 2015 – A cross-sectional study by Yale University School of Medicine researchers using companion animals as sentinels of human exposure to fracking-related chemicals investigated possible associations between reported health conditions of companion and backyard animals in Southwest Pennsylvania and household proximity to drilling and fracking operations. Among dogs living in households located less than one kilometer from a gas well, risks for health problems were elevated, especially for dermal conditions, compared to animals living more than two kilometers from a well.400

• January 1, 2015 – A Yale-led team studied the relationship between household proximity to drilling and fracking operations and reported health symptoms in Washington County, Pennsylvania where 624 gas wells were in active operation, most of which had been

drilled in the past five to six years. Researchers found that health symptoms reported by residents increased in frequency as distance between household and gas wells decreased. Among persons living less than one kilometer from drilling and fracking operations, rashes and upper respiratory problems were more prevalent. The authors of this study, the largest to date on the link between reported symptoms and natural gas drilling activities, say that their findings are “…consistent with earlier reports of respiratory and dermal conditions in persons living near natural gas wells.” They also cite literature demonstrating the biological plausibility of a link between oil and gas extraction activities and both categories of health effects reported.\footnote{Rabinowitz, P. M. Slizovskiy, I. B, Lamers, V., Trufan, S. J., Holford, T. R., Dziura, J. D., … Stowe, M. H. (2015). Proximity to natural gas wells and reported health status: results of a household survey in Washington County, Pennsylvania. \textit{Environmental Health Perspectives}, 123, 21-26. doi: 10.1289/ehp.1307732. See also footnote 29.}

- December 17, 2014 – As part of a lengthy review that became the foundation for New York State’s ban on high volume hydraulic fracturing, the New York State Department of Health (NYSDOH) identified environmental problems associated with fracking that could contribute to adverse public health impacts. Among them: air pollution (particulate matter, ozone, diesel exhaust, and volatile organic compounds) that could affect respiratory health; drinking water contamination from underground migration of methane and/or fracking chemicals associated with faulty well construction or seismic activity; drinking water contamination from inadequate water treatment of fracking waste or from surface spills of fracking chemicals or wastewater; earthquakes and the creation of fissures; increased vehicle traffic; increased noise; increased demand for housing and medical care; and public health problems related to climate change impacts from methane and other greenhouse gas emissions into the atmosphere. The NYSDOH Public Health Review also discussed findings from surveys of health symptoms among residents living near high volume hydraulic fracturing activities. These included skin rash, nausea or vomiting, abdominal pain, breathing difficulties, cough, nosebleed, anxiety, stress, headache, dizziness, eye irritation, and throat irritation in populations living near drilling and fracking operations. The NYSDOH Public Health Review noted that ongoing studies by both government agencies and several academic institutions were exploring the public health risks and impacts of fracking but that many of these studies were years from completion. The review concludes:

… significant gaps exist in the knowledge of potential public health impacts from [high volume hydraulic fracturing].… The existing science investigating associations between [high volume hydraulic fracturing] activities and observable adverse health outcomes is very sparse and the studies that have been published have significant scientific limitations. Nevertheless, studies are suggestive of potential public health risks related to [high volume hydraulic fracturing] activity that warrant further careful evaluation.

In an accompanying letter to the New York State Department of Environmental Conservation, Health Commissioner Howard Zucker, MD, concluded,
… the overall weight of the evidence from the cumulative body of information contained in this Public Health Review demonstrates that there are significant uncertainties about the kinds of adverse health outcomes that may be associated with [high volume hydraulic fracturing], the likelihood of the occurrence of adverse health outcomes and the effectiveness of some of the mitigation measures in reducing or preventing environmental impacts which could adversely affect public health. Until the science provides sufficient information to determine the level of risk to public health from [fracking] to all New Yorkers and whether the risks can be adequately managed, DOH recommends that high volume hydraulic fracturing should not proceed in NYS.

- October 13, 2014 – According to the North Dakota Health Department, the number of HIV and AIDS cases in North Dakota more than doubled between 2012 and 2014, and cases were shifting to the state’s western oil fields, where 35 to 40 percent of all new cases occurred. Previously, only 10 percent of cases were in that region. This trend followed on the heels of an upsurge in sexually transmitted chlamydia cases in the same region. The North Dakota state director of disease control, Kirby Kruger, attributed the uptick in HIV cases to the drilling and fracking industry and attempted to spread HIV prevention messages at the “man camps” that house young male workers in the oil industry. Human trafficking for purposes of prostitution accompanied the fracking boom, but there was a shortage of medical professionals to address this public health crisis, according to Kruger, who noted that it was difficult to hire nurses and medical staff who could live in the area on a public health wage.

- October 2, 2014 – According to researchers from the University of Pennsylvania’s Center of Excellence in Environmental Toxicology, an increasing number of gas wells in Pennsylvania is significantly correlated with inpatient rates of hospitalization. The research team collected data from seven different insurance providers for three counties; the study’s publication is forthcoming.

- September 11, 2014 – In Texas, commercial vehicle accidents have increased more than 50 percent since 2009 when the state’s ongoing drilling and fracking boom began, according to an investigation by the Houston Chronicle and Houston Public Media News 88.7. “For six decades, highway deaths have dropped steadily all across the United States…. But in Texas all motor vehicle fatalities – and accidents involving commercial

trucks – have turned back upward since the state’s oil drilling and fracking boom began in 2008.” This rising motor vehicle death toll is especially felt in formerly rural counties in the Eagle Ford and Permian Basin, now places of heavy drilling and fracking. A new Department of Public Safety “Road Check” program finds annually, “27 to 30 percent of Texas’ commercial trucks shouldn't be operating at all due to potentially life-threatening safety problems like defective brakes, bald tires, inoperable safety lights and unqualified, unfit or intoxicated drivers.”

- August 3, 2014 – Hospitals in the Bakken Shale region reported a sharp rise in ambulance calls and emergency room visits after 2006. “Mercy Medical Center in Williston and the Tioga Medical Center in neighboring Williams County saw their ambulance runs increase by more than 200 percent. Tioga’s hospital saw a staggering leap in trauma patients by 1,125 percent. Mercy had a 373 percent increase.” Drugs (including overdoses of prescription drugs, methamphetamine, and heroin) explain many of the cases, with oilfield related injuries such as “fingers crushed or cut off, extremity injuries, burns and pressure burns” accounting for 50% of the cases in one of the region’s hospital emergency rooms.

- May 21, 2014 – Raising questions about possible links to worsening air pollution from the Uintah Basin’s 11,200 oil and gas wells, health professionals reported that infant deaths in Vernal, Utah, rose to six times the normal rate over the past three years. Physician Brian Moench said, “We know that pregnant women who breathe more air pollution have much higher rates of virtually every adverse pregnancy outcome that exists…. And we know that this particular town is the center of an oil and gas boom that’s been going on for the past five or six years and has uniquely high particulate matter and high ozone.” Although it formerly had pristine air quality, Uintah County, Utah received a grade “F” for ozone in the American Lung Association’s 2013 State of the Air Report.

- January 28, 2014 – Congenital heart defects, and possibly neural tube defects in newborns, were associated with the density and proximity of natural gas wells within a 10-mile radius of mothers’ residences in a study of almost 25,000 births from 1996-2009 in rural Colorado. The researchers note that natural gas development emits several

chemicals known to increase risk of birth defects (teratogens).

- January 4, 2014 – Preliminary data from researchers at Princeton University, Columbia University, and MIT showed elevated rates of low birthweight among infants born to mothers living near drilling and fracking operations during their pregnancies.

- October 2013 – A preliminary study of the health impacts of oil and gas extraction on infant health in Colorado found that proximity to wells—linked with air pollutants from fracking operations—was associated with reductions in average birthweight and length of pregnancy as well as increased risk for low birthweight and premature birth. A study by the same author, currently under review, which analyzed births to Pennsylvania mothers residing close to a shale gas well in Pennsylvania from 2003-2010, also identified increased risk of adverse effects. This includes low birth weight, as well as a 26 percent increase in APGAR scores under 8. (APGAR—or American Pediatric Gross Assessment Record—is a measure of newborn responsiveness. Scores of less than 8 predict an increase in the need for respiratory support.)

- August 26, 2013 – Medical experts at a rural clinic in heavily-drilled Washington County, Pennsylvania reported case studies of 20 individuals with acute symptoms consistent with exposure to air contaminants known to be emitted from local fracking operations.

- May 2, 2013 – A community-based participatory research study in Pennsylvania tested air and water quality and surveyed self-reported health symptoms of more than 100 residents living near drilling and fracking operations. The team detected a total of 19 volatile organic compounds in ambient air sampled outside of homes. The reported health symptoms closely matched the established effects of chemicals detected through air and water testing at those nearby sites. Moreover, those symptoms occurred at significantly higher rates in households closer to the gas facilities than those farther away. Indicative of the growing prevalence of such health impacts in the state, a poll showed that two-
thirds of Pennsylvanians support a moratorium on fracking because of concern about negative health impacts.418

Noise pollution, light pollution, and stress

Drilling and fracking operations and ancillary infrastructure expose workers and nearby residents to continuous noise and light pollution that is sustained for periods lasting many months. Chronic exposure to light at night is linked to adverse health effects, including breast cancer. Sources of fracking-related noise pollution include blasting, drilling, flaring, generators, compressor stations, and truck traffic. Exposure to environmental noise pollution is linked to cardiovascular disease, cognitive impairment, and sleep disturbance. Workers and residents whose homes, schools, and workplaces are in close proximity to well sites are at risk from these exposures as well as from related stressors. A UK Health Impact Assessment (HIA) identified stress and anxiety resulting from drilling-related noise—as well as from a sense of uncertainty about the future and eroded public trust—as key public health risks related to fracking operations.

- July 9, 2015 – As part of its assessment of potential health impacts, the California Council of Science and Technology looked at the impacts of noise and light pollution from oil and gas operations in California. The researchers noted that a number of activities associated with drilling and fracking generated noise at levels considered dangerous to public health. Noise is a biological stressor that can aggravate or contribute to the development of hypertension and heart problems. In California, noise from well stimulation was associated with both sleep disturbance and cardiovascular disease in a dose-response relationship. Exposure to artificial light at night has been linked to breast cancer in women, although almost no research has been conducted on the public health implications of light pollution from oil and gas extraction specifically.419

- December 17, 2014 – The New York State Department of Health identified community impacts related to noise as a potential contributor to a variety of negative health impacts from drilling and fracking operations but noted that considerable scientific uncertainty remains on the issue of noise exposure per se as a risk factor. Noise, air pollution, traffic, vibration, odors, and nighttime lighting may all increase together as proximity to a drilling site decreases.420

• December 1, 2014 – Range Resources Corporation warned supervisors in Pennsylvania’s Donegal Township that a “big burn” natural gas flare will continue for as long as a week and “will produce a continuous noise of as much as 95 decibels at the well pad. Sustained decibel levels between 90 and 95 can result in permanent hearing loss, but workers will be equipped with ear protection.” Township supervisor Doug Teagarden expressed concern for residents, saying, “They told us the flare would be double the size of other well flares, and the noise will be like a siren on a firetruck…. There are houses within a couple of hundred yards of the well pad, and those folks are going to hear it.”

• November 6, 2014 – Sakthi Karunanithi, Director of Public Health in Lancashire, UK, reported on a Health Impact Assessment (HIA) of the two proposed shale gas exploration sites in Lancashire. Karunanithi’s study determined that key risks to the health and well-being of the residents who live near the two proposed sites in Lancashire include stress and anxiety from uncertainty that could lead to “poor mental wellbeing,” and noise-related health effects due to continuous drilling. The HIA also noted a lack of public trust and confidence.

• September 2014 – The Ohio Shale Country Listening Project, a collaborative effort to solicit, summarize, and share the perspectives and observations of those directly experiencing the shale gas build out in eastern Ohio, found that the more shale gas wells a community has, the less popular the oil and gas industry becomes. Many residents reported that they had not experienced the economic benefits promised by the oil and gas industry. They complained of increased rents and costs of gas and groceries, an influx of out-of-state workers, more vehicular accidents, road destruction from large trucks, and damaged landscape and cropland. Locals reported feeling less secure and more financially strapped.

• June 20, 2014 – In its discussion of “Oil and Gas Drilling/Development Impacts,” the U.S. Office of Indian Energy and Economic Development detailed noise pollution from bulldozers, drill rigs, diesel engines, vehicular traffic, blasting, and flaring of gas. “If noise-producing activities occur near a residential area, noise levels from blasting, drilling, and other activities could exceed the U.S. Environmental Protection Agency (EPA) guidelines. The movement of heavy vehicles and drilling could result in frequent-to-continuous noise…. Drilling noise would occur continuously for 24 hours per day for

one to two months or more depending on the depth of the formation.”

Exposure to chronic noise can be deadly. The World Health Organization has documented the connection between environmental noise and health effects, including cardiovascular disease, cognitive impairment, sleep disturbance, and tinnitus. At least one million “healthy life years” are lost every year from traffic-related noise in the western part of Europe.

- February 24, 2014 – In a review of the health effects from unconventional gas extraction published in the journal *Environmental Science & Technology*, leading researchers noted, “Noise exposure is a significant hazard due to the presence of multiple sources, including heavy equipment, compressors, and diesel powered generators. Loud continuous noise has health effects in working populations. It is likely that exposure to noise is substantial for many workers, and this is potentially important for health because drilling and servicing operations are exempt from some sections of the Occupational Safety and Health Administration noise standard.” They noted that research should investigate stressors such as noise and light in the context of drilling and fracking operations in order to understand the overall effect of chemical and physical stressors together.

- May 30, 2014 – The *Denver Post* reported that in order to help meet Colorado’s noise limits for fracking operations in suburban neighborhoods (and partially block the glare of floodlights), Encana Oil and Gas erected 4-inch-thick polyvinyl walls up to 32 feet high and 800 feet long. Residents said that the plastic walls do not completely solve the problem.

- October 25, 2013 – An analysis of well location and census data by the *Wall Street Journal* revealed that at least 15.3 million Americans now live within a mile of a well that has been drilled since 2000. According to this investigation, the fracking boom has ushered in “unprecedented industrialization” of communities across wide swaths of the nation and, with it, “24/7” industrial noise, stadium lighting, earth-moving equipment, and truck traffic.

pollution on wildlife, as well as the possibility of these effects on humans, including circadian disruption, melatonin suppression, and possible resulting hormonally-linked diseases.430 Known to have ecological impacts, outdoor light pollution from drilling and fracking operations may also be linked to artificial light-associated health effects documented in humans, including breast cancer.431

- April 2013 – Led by the University of Pittsburgh Graduate School of Public Health, a study of community members living in proximity to Marcellus Shale drilling in Pennsylvania found adverse impacts to mental health, with stress the most frequently reported symptom. At least half of all respondents in each set of interviews reported these specific stressors, including: being taken advantage of; health concerns; concerns/complaints ignored; corruption; denied information or provided with false information. Many also reported the desire to move or leave community, estrangement from community, and financial damages. Researchers noted that stress can result in direct health impacts.432 Notably, mounting evidence indicates that chronic stress magnifies individuals’ susceptibility to effects of pollution; for children, this interactive effect can begin during prenatal life.433

- September 7, 2011 – A study by researchers at Boise State University and Colorado State University at Fort Collins modeled the potential impacts of compressor station noise from oil and gas operations on Mesa Verde National Park in Colorado. The study found the sound of 64 compressors outside Mesa Verde elevated the sound level within the park by 34.8 decibels on average, and by 56.8 decibels on the side of the park located closest to the compressors. According to the EPA, 55 decibels is the highest “safe noise level” to avoid damage to the human ear.434

Earthquakes and seismic activity

\textit{A growing body of evidence from Ohio, Arkansas, Texas, Oklahoma, and Colorado links fracking wastewater injection (disposal) wells to earthquakes of magnitudes as high as 5.8, in addition to swarms of minor earthquakes and fault slipping. Both the U.S. Geological Survey and state geological agencies such as the Oklahoma Geological Survey now acknowledge that...}

earthquakes can be caused by wastewater injection. Many recent studies focus on the mechanical ability of pressurized fluids to trigger seismic activity. In some cases, and especially in Canada, the fracking process itself has been linked to earthquakes and seismic activity as significant as magnitude 4.4. Emerging evidence suggests that earthquake risks cannot be prevented or mitigated through “proper” fracking protocols or by simply limiting the rate or volume of injected fluid. The question of what to do with fracking wastewater remains a problem with no viable, safe solution.

• May 2016 – In a study that has “far-reaching implications for assessment of induced-seismicity hazards,” a Canadian team of researchers determined that hydraulic fracturing itself is linked to earthquake swarms in western Canada, in contrast to the central United States where disposal of fracking waste is the cause of most induced seismicity. Furthermore, lowering the volume of injected fluid may not be sufficient to prevent quakes. In the Western Canada Sedimentary Basin, “it appears that the maximum-observed magnitude of events associated with hydraulic fracturing may exceed the prediction of an often-cited relationship between the volume of injected fluid and the maximum expected magnitude…. Rather, we propose that the size of the available fault surface that is in a critical state of stress may control the maximum magnitude…. Our results indicate that the maximum magnitude of induced events for hydraulic fracturing may not be well correlated with net injected fluid volume.”

• April 29, 2016 – Five small earthquakes in one 24-hour period originated in an area in Lawrence County, Pennsylvania near a fracking operation that was drilling into the deep Utica Shale at the time. Quoted in the Pittsburgh Post-Gazette, researchers noted that it is very difficult for operators to avoid areas with faults because their locations are very often unknown.

• March 28, 2016 – A summary of the evidence linking drilling and fracking activities to earthquakes appeared in Scientific American. Emerging data suggests that pressure changes caused by fracking wastewater injection can migrate for years before encountering a geological fault and altering stresses in ways that allow for slippage. In this way, earthquake risks can spread out over both time and space—traveling for miles beyond the disposal well and persisting for a decade or more as injected fluids travel underground. In spite of increasing scientific clarity about these mechanisms, regulators have been slow to respond.

• February 1, 2016 – An article in the Texas Journal of Oil, Gas, and Energy Law exhaustively reviewed the literature on earthquake activity in areas of six states (Arkansas, Colorado, Kansas, Ohio, Oklahoma, and Texas) where fracking takes place or

drilling wastes are disposed underground and concluded that courts should impose strict liability for earthquake damage caused either by fracking itself or by the underground injection of fracturing fluids. “Earthquakes sometimes occur when subsurface formations are properly fractured. Likewise, the risk of earthquake damage is not substantially mitigated by the exercise of due care when fract fluids are injected into the ground.”

- January 22, 2016 – An international research team investigated a swarm of earthquakes in California’s Central Valley that occurred in 2005. Using hydrogeological modeling, the researchers concluded that the underground injection of wastewater from oil drilling operations had contributed to seismicity via changes in localized pressures along an active fault.

- January 12, 2016 – As reported by CBC News, a Canadian regulatory agency ordered a drilling and fracking operation in northwestern Alberta to shut down after a magnitude 4.8 earthquake struck nearby. The operator was fracking at the time the earthquake happened.

- November 15, 2015 – A spokesperson for the Oklahoma Corporation Commission, which regulates the oil and gas industry in the state, said that Oklahoma now leads the world in earthquake frequency.

- October 29, 2015 – The Kansas Corporation Commission extended limits on the injection of wastewater from fracking operations after a drop in the frequency of earthquakes that followed an earlier order to limit such injections. Between 2013 and October 2015, Kansas recorded more than 200 earthquakes. Before that, the average rate was one earthquake every two years.

- October 23, 2015 – Bloomberg explored the national security risks that fracking-induced earthquakes in Oklahoma create for the nation’s largest oil storage hub in Cushing, where aboveground tanks hold more than 60 million barrels of crude oil and serve as a way station for oil from North Dakota’s Bakken Shale as it heads to Gulf Coast refineries. Earthquake swarms have hit within a few miles of Cushing and may be harbingers of larger quakes in the future. “Now that quakes appear to have migrated closer to Cushing,

the issue of what to do about them has morphed from a state issue to one of national security.... Not only is Cushing crucial to the financial side of the oil market, it is integral to the way physical crude flows around the country.”

- September 21, 2015 – An international team of geologists investigated possible causes of the Lusi mudflow, which began suddenly in 2006 when mud began erupting from the ground in a volcano-like fashion in an urban area of Java in Indonesia. The ongoing disaster has, as of 2015, displaced 39,700 people and cost nearly $3 billion in damages and disaster management. Looking at data on the emissions of subsurface gases before and after the eruption began, the team concluded that the likely cause was nearby gas drilling that forced fluid into the clay layer via the open well. “We therefore conclude that the Lusi eruption was not triggered naturally but was instead the consequence of drilling operations.” In interviews with the New York Times, lead author Mark Tinjay said, “We are now 99 percent certain that the drilling hypothesis is valid,” while other experts who were not authors of the paper expressed less certainty.

- July 27, 2015 – During a seven-day period in late July, the state of Oklahoma experienced 40 earthquakes. According to the U.S. Geological Survey (USGS), three registered above magnitude 4.0, one of which was strong enough to be felt by 1.9 million people, including residents of several surrounding states. In response, gas and oil operators voluntarily shut down two nearby wastewater injection wells and reduced operations by half at a third well. According to the Oklahoma Geological Survey, the recent quakes are occurring along a fault line that extends north of Oklahoma City and signal greater potential for a larger earthquake. Ten days before the voluntary shutdowns, the Oklahoma Corporation Commission, which regulates the oil and gas industry, put 211 wastewater disposal wells under extra review. The next month, Oklahoma regulators, acknowledging that previous efforts have been unsuccessful in reducing seismic activity, asked operators of 23 injection wells to decrease the amount of wastewater injected by 38 percent and signaled that more sweeping regulatory actions may follow.

• July 1, 2015 – Two researchers, from the USGS and the Geological Survey of Canada, offered a summary of the history, basic geology, and engineering of fracking fluid injection and induced seismicity. Noting that since 2001 Oklahoma had experienced two earthquakes of very large magnitude (5.0 and 5.3), the authors called for “a detailed understanding of the physical processes involved in inducing large magnitude events and a detailed understanding of the geology and hydrology at the site of the earthquakes.” They also noted that many important parameters are either unknown or not easily constrained, making it “difficult to determine the wells that will induce earthquakes and those that will not.”

• June 30, 2015 – The Oklahoma Supreme Court ruled that homeowners who have sustained injuries or property damage that they believe is due to earthquakes caused by oil and gas operations can sue for damages in state trial courts. The number of earthquakes with magnitude 3.0 or higher has skyrocketed in Oklahoma, with 1,100 predicted to occur in 2015. Earlier this year, scientists at the state’s geological survey reversed prior views and embraced the conclusion that the majority of the recent earthquakes in central and north-central Oklahoma were “very likely triggered” by underground wastewater disposal. Industry lawyers have complained that liability for such damages will be economically unsustainable. A separate class action lawsuit is planned.

• June 19, 2015 – By compiling a database of 187,570 injection wells in the central and eastern United States, University of Colorado Boulder and USGS researchers were able to test for associations between fracking waste disposal and earthquakes. Results showed far more injection wells were potentially related to earthquakes than had previously been realized, and active disposal-only wells were more than 1.5 times more likely than active oil extraction wells to be associated with an earthquake. In addition, high-rate injection wells, receiving more than 300,000 barrels of fluid per month, were much more likely than lower-rate wells to be associated with an earthquake, while other factors, including wellhead injection pressure, appeared unrelated to increased earthquake activity. The study called for managing injection rates as “a useful tool to minimize the likelihood of induced earthquakes.” The researchers did not address the impact of hydrofracturing activities per se as a potential confounding variable.

• June 18, 2015 – Close examination of several areas in Oklahoma by Stanford University geophysicists revealed that dramatic increases in recent earthquake activity followed 5- to 66

10-fold increases in deep-well injection of briny “produced water,” the highly salty fluid that rises to the surface from water-bearing oil reserves and requires disposal. The rate of earthquake occurrence, which began to increase in 2009, is now 600 times higher than it was before the onset of widespread fracking in the state. The disposal of this type of waste in Oklahoma mostly occurs via injection into geological formations that appear to be in hydraulic communication with potentially active faults in the crystalline basement. The study proposed that increasing pressure, spreading away from injection wells over time, could eventually trigger slips on critically stressed faults, resulting in earthquake activity. It is likely that, “even if injection from many wells were to stop immediately, seismicity would continue as pressure continues to spread out from past injection.”

- June 12, 2015 – Researchers in France uncovered an unexpected mechanism by which subsurface fluid injections, such as those used in high volume hydrofracturing, can cause earthquakes. They found that injection of pressurized water can cause fault lines to “creep” rather than slip suddenly as occurs during earthquakes. Earthquakes did follow this slow movement but took place in a portion of the fault outside the pressurized zone. This research demonstrated that subsurface injection of fluids under pressure can cause primary gradual slippage of fault planes leading to secondary sudden seismic activity.

- June 11, 2015 – As reported by the Vancouver news magazine The Tyee, seismic events of magnitude greater than 2.0 (but less than 4.0) in the Fox Creek area were reported in Alberta, Canada since the initiation in February of a novel “traffic light system” for responding to measured seismic activity. The system requires varying responses according to the magnitude of the event, ranging from no action up to ceasing operations and informing the Alberta Energy Regulator for events at magnitudes greater than 4.0. Experts noted that the system does not work well when the largest event in the sequence is the first event. Moreover, once a sequence of earthquakes is initiated, the sequence may continue, sometimes with larger earthquakes, long after potentially causally related drilling or injection activities have ceased.

- June 1, 2015 – In a data-rich presentation, a team of researchers from St. Louis University, Colorado State University, and USGS concluded that “a fundamental change in the earthquake-triggering process has occurred” in central Oklahoma. Using advanced field monitoring and high-performance software, computer models illustrate active earthquake sequences associated with long fault structures “that might be capable of supporting large earthquakes (M 5 to 6)” and possibly cascades of earthquakes, which

could occur near population centers and expensive infrastructure associated with the oil and gas industry, such as a large underground crude-oil storage facility.\footnote{McNamara, D. E., Rubinstein, J. L., Myers, E., Smoczyk, G., Benz, H. M., Williams, R. A., . . . Earle, P. (2015). Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma. \textit{The Leading Edge}, 34(6). doi: 10.1190/tle34060628.1}

- April 21, 2015 – Analyzing the unusual increase of seismicity in north Texas since 2008, researchers from Southern Methodist University, the USGS, and University of Texas at Austin concluded that observed earthquake swarms were associated both with extraction (of gas and brine formation waters) and injection (of fracking wastewater), via significant stress changes at earthquake depths. The research team noted that baseline pressure monitoring data, though easy to obtain and routinely collected by industry at well sites, were currently “neither required nor typically available for analysis.” Greater
transparency and cooperation in regional seismic monitoring is needed to generate more comprehensive data sets that are necessary for robust earthquake hazard analysis, they asserted.465, 466

- April 21, 2015 – In a statement reporting on an increase in earthquakes in Oklahoma of greater than magnitude 3.0 from less than two per year historically to over two per day in 2015, the Oklahoma Geological Society acknowledged that that the primary, suspected source of “triggered seismicity” is the injection and disposal of produced water associated with oil and gas production.467

- March 30, 2015 – Bloomberg Business reported that Oklahoma state seismologists had received pressure from oil industry representatives to downplay the evidence linking fracking wastewater disposal to the soaring frequency of earthquakes in the state.468

- March 6, 2015 – A careful and detailed analysis of historical data coupled with onsite, real-time measurements of seismic activity in central Oklahoma via rapidly deployed seismic sensors revealed that reactivated ancient faults responsible for thousands of earthquakes in Oklahoma are capable of causing larger seismic events. Current hazard maps did not include induced seismicity and therefore underestimate earthquake hazard, the USGS reported. Until new hazard maps become available, providing information about the type, length, and location of these reactivated faults could provide guidance to the oil and gas industry and help inform public policy decisions.469 In addition, noted lead author Dan McNamara, such information can “aid in adapting building codes to ensure that structures can withstand more damaging earthquakes.470

- February 20, 2015 – Scientists with the USGS reported in Science about grappling with an unexpected increase in injection-related seismic activity across the middle of North America. In 2014, the number of measured earthquakes with magnitude of 3 or greater in Oklahoma exceeded that in California, and observations increasingly suggested that the effects of fluid injection were not confined to the target formation but instead were communicated, sometimes to greater depths, along pre-existing faults. Making hazard modeling more difficult, “most of these faults are only detected when they are imaged by well-located induced earthquakes.” Consequently, predicting and controlling such

seismic activity may not be possible, leading to a recommendation that injection projects should be sited away from population centers.471

- February 5, 2015 – Citing an association between increased water use and fracking-induced seismic activity, a research scientist at the Geological Survey of Canada offered the quantity of water injected underground as his hypothesis for an observed increase in the frequency and magnitude of earthquake activity in areas near fracking wells. Although the Council of Canadian Academies in 2014 called for more monitoring and data collection, there are only ten monitoring stations in British Columbia, overseeing the operations of thousands of fracking wells, reported the \textit{Vancouver Observer}.472

- January 29, 2015 – The industry-funded Alberta Energy Regulator confirmed that the location of an earthquake of magnitude 4.4 near Fox Creek, Alberta, was “consistent with being induced by hydraulic fracturing operations,” making it the largest felt earthquake yet believed to be related to fracking. Despite claims from industry that tremors related to deep-level fracturing could never reach magnitudes that would allow them to be felt on the surface, Gail Atkinson, who holds the Canada Research Chair in Induced Seismicity Hazards at Western University in Ontario, noted, “With fracking, the magnitudes have been increasing every year.”473

- January 6, 2015 – Using a specialized program, Miami University researchers analyzed data from multiple seismic stations and determined that a cluster of 77 earthquakes in Poland Township, Ohio, which occurred over the course of a little more than a week, was related temporally and spatially to active hydraulic fracturing operations. When the fracturing operations were shut down, the rate of earthquake activity declined to only 6 events in the next 12 hours and only a single event over approximately the next two months. Among this cluster of seismic activity, an earthquake of magnitude 3.0 ranks as one of the largest earthquakes in the United States to be induced by hydraulic fracturing. The mechanism for these earthquakes appears to be induction of slip along a pre-existing fault or fracture zone. Because “no known fault or historical seismicity had been [previously] identified in the area,” regulations prohibiting fracturing within three miles of a known fault would not have been protective.474, 475

December 18, 2014 – In Canada, an investigation by the British Columbia Oil and Gas Commission found that induced seismicity in the Horn River Basin could be attributed both to wastewater disposal and to hydraulic fracturing operations. The Commission recommended mitigation of induced seismicity from wastewater disposal by “reducing injection rates, limiting the increase in [subsurface] reservoir pressure, and locating distal from faults,” among other mitigation techniques.

October 23, 2014 – Researchers from USGS and the Global Seismological Services in Golden, Colorado, linked a 2011 magnitude 5.3 earthquake in Colorado, which damaged the foundations of several homes, to underground disposal of fracturing wastewater. The study determined that the earthquake ruptured an 8 to 10 kilometer-long segment of normal faults—an unexpectedly long length for a magnitude 5.3 earthquake—suggesting that wastewater disposal may have triggered a low stress drop. Lead author Bill Barnhart, a USGS geophysicist, told Reuters, “We saw a big increase in seismicity starting in 2001, including magnitude 5 earthquakes, in many locations in the basin, and that coincided with a surge in gas production and injection of wastewater.”

September 23, 2014 – Youngstown State University geologist Ray Beiersdorfer described increased seismic activity in Youngstown, Ohio in an essay that explores how fracking and fracking-related processes are causing “earthquake epidemics” across the United States.

September 15, 2014 – Researchers at the National Energy Technology Laboratory teamed up with researchers from industry and academia to publish data and analysis from a closely watched project that involved field monitoring of the induced fracturing of six horizontal Marcellus Shale gas wells in Greene County, Pennsylvania. Touted in earlier media reports as demonstrating that, during short-term follow-up, fracking chemicals injected into these six wells did not spread to overlying aquifers, the study’s most notable finding is striking documentation of fractures from three of the six wells extending vertically to reach above an overlying rock layer previously thought to create an impenetrable “frac barrier” (that is, an upper barrier to fracture growth). In one case, a fracture extended vertically 1,900 feet, a surprisingly far distance. No pre-existing fault had been detected at this location, suggesting that small “pre-existing fractures or small-

offset (sub-seismic) faults may have focused the energy of hydraulic fractures on certain areas....” Perhaps because of the extremely small sample size and a design focused primarily on monitoring for potential gas and fluid migration, the study’s analysis includes no discussion of the seismic relevance of extremely long, vertical induced fractures.482

- September 15, 2014 – Scientists from USGS ascribed causality to wastewater injection wells from coal-bed methane production for increases in seismic activity in New Mexico and Colorado and, in particular, for an earthquake that measured magnitude 5.3 in Colorado in 2011—the second largest earthquake to date for which there is clear evidence that the earthquake sequence was induced by fluid injection.483

- September 6, 2014 – The Ohio Department of Natural Resources suspended operations at two deep-injection wells for fracking wastewater near Warren in northeastern Ohio after discovering evidence that the operation possibly caused a magnitude 2.1 earthquake. The injection well operator, American Water Management Services, had recently received permission to increase pressures at the site of the wells. In 2012, Governor John Kasich had halted disposal of fracking wastewater surrounding a well site in the same region after a series of earthquakes were tied to a deep-injection well. The company that ran that well has disputed the link. The state placed seismic-monitoring devices in the Warren area under protocols adopted after the series of earthquakes in nearby Youngstown.484

- September 1, 2014 – Explaining the need for increased seismic monitoring, Andrew Beaton, Director of the Alberta Geological Survey (AGS), stated that over a long period of time, stresses increase in and around an injection well bore. Seismic movement can be caused if the rate of injection is too fast or if there is a geological feature, such as a fault or fracture in nearby areas. Although Albertans in rural areas have been reporting for years that they can feel tremors under their feet near oil and gas activity, especially around areas of fracking, the Alberta Energy Regulator noted that deep well injections have been shown to create more of an earthquake hazard than hydraulic fracturing. Alberta experienced 819 earthquakes between 1918 and 2009. In comparison, Saskatchewan recorded 13 in the same time period and British Columbia recorded more than 1,200 earthquakes in 2007 alone. There are currently 24 seismic monitors in Alberta, which are tied into other networks, such as those belonging to Environment

Canada, University of Calgary, and University of Alberta.485

- August 26, 2014 – In a first-of-its-kind lawsuit, a resident of Prague, Oklahoma, sued two energy companies after rocks fell from her chimney and injured her leg during an earthquake of greater than magnitude 5. The lawsuit claims that underground injection of fracking wastewater conducted by New Dominion LLC and Spess Oil Company has caused shifts in fault lines that have resulted in earthquakes.486

- July 31, 2014 – William Ellsworth, a research geophysicist at the U.S. Geological Survey Earthquake Science Center, reported that USGS is developing a hazard model that takes induced earthquakes into account. In addition, residents of Oklahoma, where a sharp spike in earthquake activity has been noted over the past decade, are showing an increased interest in obtaining earthquake insurance.487

- July 3, 2014 – Using data from the Oklahoma Corporation Commission, a team of researchers led by Cornell University geophysicist Katie Keranen found that a steep rise in earthquakes in Oklahoma can be explained by fluid migration from wastewater disposal wells. Moreover, injected fluids in high volume wells triggered earthquakes over 30 kilometers (over 18 miles) away. All of the wells analyzed were operated in compliance with existing regulations. Similar mechanisms may function in other states with high volumes of underground injection of wastewater from unconventional oil and gas production.488 Reporting on the study and the increase in earthquakes across the United States and the link to fracking and wastewater disposal, the \textit{Associated Press} noted that some states, including Ohio, Oklahoma, and California, have introduced new rules compelling drillers to measure the volumes and pressures of their injection wells as well as to monitor seismicity during fracking operations.489

- July 1, 2014 – Seismologists linked the emergence of a giant sinkhole that formed in August 2012 near Bayou Corne in southeast Louisiana to tremors (earthquakes) caused by high-pressure pulses of either natural gas or water charged with natural gas. The surges of natural gas that caused the explosive tremors (earthquakes) may have weakened an adjacent salt cavern and caused its collapse. Alternatively, part of the salt cavern may have collapsed, causing a nearby gas pocket to give off surges of gas, later followed by

the complete collapse of the salt cavern. These findings help illuminate the role of pressurized fluids in triggering seismic events.\footnote{Nayak, A. & Dreger, D. S. (2014). Moment tensor inversion of seismic events associated with the sinkhole at Napoleonville Salt Dome, Louisiana. \textit{Bulletin of Seismological Society of America} 104(4), 1763-1776. doi: 10.1785/0120130260}

- May 2, 2014 – The USGS and Oklahoma Geological Survey (OGS) jointly issued an official earthquake warning for Oklahoma, pointing out that the number of earthquakes in the state has risen 50 percent since just October—when the two agencies had issued a prior warning. The advisory stated that this dramatic increase in the frequency of small earthquakes “significantly increases the chance for a damaging quake in central Oklahoma.”\footnote{Geological Survey Joint Statement. (2014, May 2). Record number of Oklahoma tremors raises possibility of damaging earthquakes. United States Geological Survey. Retrieved from http://earthquake.usgs.gov/regional/ceus/products/newsrelease_05022014.php} Injection wells used for the disposal of liquid fracking waste have been implicated as the presumptive cause of the earthquake swarm. According to the OGS, about 80 percent of the state of Oklahoma is closer than ten miles from an injection well.\footnote{Branson-Potts, H. (2014, June 17). Oklahoma coming to terms with unprecedented surge in earthquakes. \textit{Los Angeles Times}. Retrieved from http://www.latimes.com/nation/la-na-oklahoma-earthquakes-20140618-story.html#page=1} Since the joint earthquake advisory was released in May, the number of earthquakes in Oklahoma has continued to rise. During the first four months of 2014, Oklahoma had experienced 109 earthquakes of magnitude 3 or higher on the Richter scale. By mid-June, the number of earthquakes had topped 200, exceeding the frequency of earthquakes in California.\footnote{Walsh, B. (2014, May 1). The seismic link between fracking and earthquakes. \textit{Time}. Retrieved June 9, 2014, from http://time.com/84225/fracking-and-earthquake-link/}

- May 2, 2014 – At the annual meeting of the Seismological Society of America, leading geologists warned that the risks and impacts of earthquakes from fracking and injection wells are even more significant than previously thought, pointing out that such earthquakes could occur tens of miles away from wells themselves, including quakes greater than magnitude 5.0. Justin Rubinstein, a research geophysicist at the USGS said, “This demonstrates there is a significant hazard. We need to address ongoing seismicity.”\footnote{Walsh, B. (2014, May 1). The seismic link between fracking and earthquakes. \textit{Time}. Retrieved June 9, 2014, from http://time.com/84225/fracking-and-earthquake-link/} Seismologist Gail Atkinson reported, “We don’t know how to evaluate the
likelihood that a [fracking or wastewater] operation will be a seismic source in advance.495

- April 11, 2014 – State geologists reported a link between fracking and a spate of earthquakes in Ohio, prompting the Ohio Department of Natural Resources to place a moratorium on drilling in certain areas and to require greater seismic monitoring.496

- April 3, 2014 – Researchers linked earthquakes in Mexico to fracking in the Eagle Ford Shale, which extends beneath both southern Texas and northern Mexico. They also noted a statistical correlation between seismic activity and fracking, particularly in the border state of Nuevo Leon, which registered at least 31 quakes between magnitude 3.1 and 4.3.497

- April 2014 – Researchers from the University of Alberta and the Alberta Geological Survey published a study in the \textit{Journal of Geophysical Research} that found wastewater injection in Alberta is highly correlated with spikes of seismic activity between October 2006 and March 2012.498 On November 13, 2014, \textit{CBC News} reported on a more recent increase in earthquakes, which may also be linked to injection wells.499

- March 7, 2014 – USGS researchers published a study confirming that Oklahoma’s damaging magnitude 5.7 earthquake in 2011 was caused by fracking wastewater injection.500 One of the authors of the study, seismologist Elizabeth Cochran, noted, “Even if wastewater injection only directly affects a low-hazard fault, those smaller events could trigger an event on a larger fault nearby.”501

• January 30, 2014 – A USGS research team linked the rise in earthquakes in Colorado to fracking wastewater injection wells and announced that a study will be published in six to nine months.

• December 12, 2013 – The New York Times detailed the growing link between fracking wastewater injection wells and earthquakes, as well as between fracking itself and earthquakes, with a focus on Oklahoma and a recent magnitude 4.5 earthquake there. As the New York Times noted, “Oklahoma has never been known as earthquake country, with a yearly average of about 50 tremors, almost all of them minor. But in the past three years, the state has had thousands of quakes. This year has been the most active, with more than 2,600 so far, including 87 last week…. State officials say they are concerned, and residents accustomed to tornadoes and hail are now talking about buying earthquake insurance.”

• November 19, 2013 – Reuters reported that a series of Oklahoma earthquakes in September of 2013 damaged several homes, and that more scientists in a number of states are concerned about earthquakes related to oil and gas development. Seismologist Austin Holland with the University of Oklahoma said, “This is a dramatic new rate of seismicity.”

• July 19, 2013 – A study from the Lamont-Doherty Earth Observatory linked 109 earthquakes in Youngstown, Ohio to fracking wastewater disposal.

• July 11, 2013 – A study in Science by Columbia University’s Lamont-Doherty Earth Observatory showed that deep-well injection of fracking waste can stress geological faults in ways that make them vulnerable to slipping. The research shows that distant natural earthquakes triggered swarms of smaller earthquakes on critically stressed faults. The researchers wrote, “The fluids [in wastewater injection wells] are driving the faults to their tipping point…. Areas with suspected anthropogenic earthquakes are more susceptible to earthquake-triggering from natural transient stresses generated by the seismic waves of large remote earthquakes.”

• April 2013 – A group of British researchers stated that hydraulic fracturing itself was the likely cause of at least three earthquakes powerful enough to be felt by human beings at the surface. The researchers proposed that increases in the fluid pressure in fault zones were the causal mechanism for these three known instances of “felt seismicity” in the United States, Canada, and the United Kingdom. The largest of these earthquakes was a magnitude 3.8 in the Horn River Basin, Canada.\(^{508}\)

• March 26, 2013 – Scientists from the University of Oklahoma, Columbia University and USGS linked a 2011 swarm of earthquakes in Oklahoma to fracking waste disposal in that state.\(^{509}\) This included a magnitude 5.7 earthquake—possibly the largest ever triggered by wastewater injection—that injured two people, destroyed 14 homes, and was felt across 17 states.\(^{510}\) The research team concluded in a paper in the journal Geology that their data called into question the previously predicted maximum size of injection-induced earthquakes.\(^{511, 512}\)

• December 14, 2012 – At a 2012 American Geophysical Union meeting, scientists presented data and concluded that some U.S. states, including Oklahoma, Texas and Colorado, have experienced a significant rise in seismic activity coinciding with a boom in gas drilling, fracking and wastewater disposal. Scientists further found that Oklahoma has seen a significant increase in earthquakes linked to wastewater injection, that a 5.3 earthquake in New Mexico was linked to wastewater injection, and that earthquakes were increasingly common within two miles of injection wells in the Barnett Shale region of Texas. Art McGarr, a researcher at the U.S. Geological Survey Earthquake Science Center, concluded that, “The future probably holds a lot more in induced earthquakes as the gas boom expands.”\(^{513}\)

• November 30, 2012, January 11, 2012, December 22, 2009 – In three different sets of comments on proposed fracking guidelines and regulations, citing scientific reports linking oil and gas infrastructure to seismic activity, the New York City Department of Environmental Protection (NYC DEP) raised serious concerns about the impacts of potential seismic activity from fracking-related activities on New York City’s water

supply infrastructure.514, 515, 516 The NYC DEP has consistently raised concerns that seismic activity surrounding New York City’s aquifers and watershed infrastructure could threaten the city’s drinking water supply by triggering microseismic events and small induced earthquakes that, in turn, could threaten the integrity of the aging, 100-mile-long aqueducts that carry drinking water from the Catskill Mountains into the New York City metropolitan area. The agency expressed specific concerns about the ability of hydraulic fracturing fluids to migrate underground and to intercept and reactivate faults miles away.

- September 6, 2012 – The British Columbia Oil and Gas Commission determined that fracking itself causes earthquakes, pointing to the results of a probe into 38 seismic events near fracking operations in the Horn River Basin. The report noted that no quakes had been recorded in the area prior to April 2009, before fracking began. The report recommended that the link between fracturing and seismic activity be further examined.517

- March 29, 2012 – The USGS found that between 2001 and 2011, there was a six-fold increase in earthquakes greater than magnitude 3.0 in the middle of the United States that “are almost certainly manmade.” The agency further reported that the increase appears to be linked to oil and gas production and deep injection of drilling wastewater.518, 519

- July 31, 2011 – Numerous earthquakes in Arkansas motivated the Arkansas Oil and Gas Commission to shut down a disposal well and enact a permanent moratorium on future disposal wells in a nearly 1,200 square-mile area of the Fayetteville Shale.520

• March 10, 2010 – In Texas, a 2008-2009 swarm of earthquakes in the Dallas-Fort Worth area was linked to produced water disposal wells.521

• June 12, 2009 – The Wall Street Journal reported that earthquakes shook Cleburne, Texas, a small town at the epicenter of fracking activity. More earthquakes were detected during that period of fracking activity than in the previous 30 years combined.522

Abandoned and active oil and natural gas wells as pathways for gas and fluid migration

An estimated 2.6 million oil and gas wells across the United States are no longer in production. The location and status of the vast majority are not recorded in state databases, and most remain unplugged. Whether plugged or unplugged, abandoned wells serve as potential pathways for gas and fluid migration, heightening the risks of groundwater contamination and contributing methane emissions to the atmosphere. Vertical channels can be opened when fractures from new drilling and fracking operations intersect with old, abandoned wells. Research from New York and Pennsylvania (where an estimated three-quarters of abandoned wells are not plugged) shows that, cumulatively, abandoned wells are a significant source of methane leakage into the atmosphere and may exceed cumulative total leakage from oil and gas wells currently in production. No state or federal agency routinely monitors methane leakage from abandoned wells. Industry experts, consultants and government agencies including the U.S. Environmental Protection Agency (EPA), the U.S. General Accounting Office (now the Government Accountability Office), Texas Department of Agriculture, New York State Department of Environmental Conservation (NYS DEC), Pennsylvania Department of Environmental Protection (DEP), Illinois Environmental Protection Agency, and the British Columbia Oil and Gas Commission have all warned about problems with abandoned wells due to the potential for pressurized fluids and gases to migrate through inactive and in some cases, active wells.

• June 20, 2016 – Pennsylvania’s attorney general began reviewing regulations requiring drillers to document abandoned oil and gas wells within 1,000 feet of a new fracking site. According to a Bloomberg investigation, “This puts Pennsylvania among states such as California, Texas, Ohio, Wyoming and Colorado confronting the environmentally catastrophic legacy of booms as fracking and home development expand over former drilling sites. As the number of fracked wells increases, so does the chance they might interact with lost wells.” As noted by Bloomberg, state databases document only about 10 percent of the nation’s 2.6 million abandoned oil and gas wells; the whereabouts of the vast majority are unknown. Current efforts in Pennsylvania to increase documentation on the location and status of inactive wells rely on “citizen scientists” equipped with GPS

and methane sniffers, as well as home and farm-owners living on top of abandoned wells. Over a period of three decades, Pennsylvania’s Department of Environmental Protection has located and plugged only about 3,000 abandoned wells.\(^{523}\)

- May 30, 2016 – New developments of houses, schools, and shopping centers are being built over abandoned oil and gas wells, according to a report by Wyoming Public Media. In most states there is no requirement for homeowners to be notified about abandoned wells on their properties, and these wells are not systematically monitored for leaks, nor are their locations well mapped. A builder who worked in the oil and gas industry for decades and suffered cardiac arrest when methane from an abandoned well he was inadvertently working atop exploded, said that there were “no signs” that a well was there.\(^{524}\)

- January 26, 2016 – Researchers tested soil methane levels at 102 United Kingdom decommissioned oil and gas wells between 8 and 79 years old. Thirty percent of the wells had methane at the soil surface that was significantly higher than their control samples in nearby fields. Thirty-nine percent of well sites had significantly lower surface soil methane than their respective controls. Researchers suggested several explanations for the latter results, including replaced soils.\(^{525}\)

- October 20, 2015 – Abandoned oil and gas wells near fracking sites can be conduits for methane escape that is not currently being measured, according to University of Vermont researchers. Fractures in the surrounding rock may connect to existing unused oil and gas wells in the area during fracking processes, thus providing a pathway for methane to migrate to the surface. The study used a mathematical model based on the large part of southern New York State underlain by the Marcellus Shale, incorporating “the depth of a new fracturing well, the vertical growth of induced fractures, and the depths and locations of existing nearby wells.” The researchers concluded the probability that new fracking-induced fractures would connect to a pre-existing well to be .03 percent to 3 percent. Density of nearby abandoned wells was the largest factor, and researchers pointed out the continuing problem of undocumented abandoned wells.\(^{526}\) As noted in an accompanying press release, probabilities are likely much higher: “Industry-sponsored information made public since the paper was published vastly increased assumptions about the area

impacted by a set of six to eight fracking wells known as a well pad – to two square miles – increasing the probabilities cited in the paper by a factor of 10 or more.527

- July 9, 2015 – As part of an extensive, peer-reviewed assessment of fracking in California, the California Council on Science and Technology identified leakage through failed, inactive wells as a known mechanism for fracking-related water contamination in other states, including Texas and Ohio, and said that it is not known whether abandoned wells in California likewise function as conduits for groundwater contamination and gas leakage. In California, there are more inactive than active wells. Of the state’s nearly one-quarter million oil and gas wells, more than half (116,000) have been plugged and abandoned, while another 1,800 inactive wells are “buried” with only an approximate location known. The locations of another 338 old wells are entirely unknown. California also has 110 orphaned wells, that is, abandoned wells with no owners. Most of California’s abandoned wells (53 percent) are located in Kern County.528

- May 11, 2015 – \textit{CBC News} reported that falling gas and oil prices have prompted many smaller companies to abandon their operations in Alberta, Canada, leaving the provincial government to close down and dismantle their wells. In the past year alone, the number of orphaned wells in Alberta increased from 162 to 702. At the current rate of work, deconstructing the inventory of wells abandoned just in the past year alone will be a 20-year task.529

- April 27, 2015 – In a peer-reviewed study, researchers with the U.S. Fish and Wildlife Service documented 5,002 wells located on National Wildlife Refuge System units, in addition to 1,339 miles of pipeline. Almost half of the wells were inactive, while one-third were active and the remainder either plugged and abandoned or with status unknown. Highlighting the impacts of leaks, spills, and routine operation and maintenance on wildlife conservation efforts, the authors called for regular on-site ecological assessments, improved efforts to plug inactive wells and restore inactive well sites, and a “consolidated and robust regulatory framework” to protect the public’s interests.530

- March 24, 2015 – Analyzing data from 42 abandoned oil and gas wells in western Pennsylvania, a Princeton and Stanford team documented a wide range of leakage potentials. As a group, gas wells have higher permeability than oil wells. Among gas wells, methane flow rates are positively correlated with permeability. Subterranean temperatures and temperatures, along with well depth, are all variables that can influence

leakage potentials of abandoned wells. The leakage potential of wells drilled prior to 1960 is moderate to high, and plugged wells, as well as unplugged wells, can leak. The authors note that cement plugs are imperfect barriers that can develop defects that allow fluids to flow through gaps between the plug and surrounding hole, through pores or fissures within the plug itself, or directly through cracks in the well casing.

• December 8, 2014 – A Princeton University team found that abandoned oil and gas wells in Pennsylvania, left over from prior decades of conventional drilling, leak significantly more methane than previously thought. Between 300,000 and 500,000 abandoned oil and gas wells are located in Pennsylvania, and many go unchecked and unmonitored for leaks. Nearly three-quarters are unplugged. Based on direct measurements of methane flow from 19 such wells, most of which were a half century old or older, the researchers estimated that the methane leaks from abandoned wells alone could account for between 4 and 7 percent of human-caused methane emissions in the state. Based on these measurements of positive methane flow from decades-old wells, the authors concluded that cumulative emissions from these abandoned wells “may be significantly larger than the cumulative leakage associated with oil and gas production, which has a shorter lifetime of operation.” Further, methane flow rates from plugged wells measured in this study were not consistently lower than unplugged wells and indeed were sometimes higher, even though wells are plugged for the precise purpose of limiting the escape of gases. The authors noted that an estimated three million abandoned oil and gas wells are scattered across the United States and likely represent “the second largest potential contribution to total US methane emissions above US Environmental Protection Agency estimates.” In the United States, no regulatory requirements for monitoring methane leaks from abandoned wells exist.

• December 1, 2013 – An analysis of reports from the NYS DEC found that three-quarters of the state’s abandoned oil and gas wells were never plugged. New York State has approximately 48,000 such wells; many of their locations remain unknown.

• Aug. 4, 2011 – A report from the EPA to Congress in 1987—and discovered by the New York Times—concluded that abandoned natural gas wells may have served as a pathway for hydraulic fracturing fluids to migrate underground from a shale gas well to a water well in West Virginia. In noting that the water well was polluted due to hydraulic fracturing and that such contamination was “illustrative” of contamination from oil and gas wells drilled prior to 1960 is moderate to high, and plugged wells, as well as unplugged wells, can leak. The authors note that cement plugs are imperfect barriers that can develop defects that allow fluids to flow through gaps between the plug and surrounding hole, through pores or fissures within the plug itself, or directly through cracks in the well casing.

natural gas drilling, the report suggested that additional cases of groundwater contamination from hydraulic fracturing may exist.\(^{535}\)

- April 4, 2011 – *ProPublica* reported that abandoned wells have caused problems across the nation including contamination of drinking water in Colorado, Kentucky, Michigan, New York, Texas, and other states. *ProPublica* also found that a draft report from the Pennsylvania DEP described a 2008 incident in Pennsylvania in which a person died in an explosion triggered by lighting a candle in a bathroom after natural gas had seeped into a septic system from an abandoned well. The same draft report documented at least two dozen additional cases in which gas leaked from old wells, and three in which gas from new wells migrated into old wells, seeping into water supplies and requiring the evacuation of homes.\(^{536}\)

- May 20, 2010 – The British Columbia Oil and Gas Commission issued a safety advisory after hydraulic fracturing caused a large “kick,” or unintentional entry of fluid or gas, into a nearby gas well. The commission reported that it knew of 18 incidents in British Columbia and one in Western Alberta in which hydraulic fractures had entered nearby gas wells. “Large kicks resulted in volumes up to 80 cubic meters [about 100 cubic yards] of fluids produced to surface. Invading fluids have included water, carbon dioxide, nitrogen, sand, drilling mud, other stimulation fluids and small amounts of gas.” These cases occurred in horizontal wells with a distance between wellbores of up to 2,300 feet. The Commission wrote, “It is recommended that operators cooperate through notifications and monitoring of all drilling and completion operations where fracturing takes place within 1000m [3,280 feet] of well bores existing or currently being drilled.” Such communication between active wells raises the potential that similar communication can occur between active wells and abandoned wells.\(^{537}\)

- 2010 – The NYS DEC cautioned that “abandoned wells can leak oil, gas and/or brine; underground leaks may go undiscovered for years. These fluids can contaminate ground and surface water, kill vegetation, and cause public safety and health problems.” As the agency reported, “DEC has at least partial records on 40,000 wells, but estimates that over 75,000 oil and gas wells have been drilled in the State since the 1820s. Most of the wells date from before New York established a regulatory program. Many of these old wells were never properly plugged or were plugged using older techniques that were less reliable and long-lasting than modern methods.” The agency published similar comments in 2008 and 2009.

- January 2009 – In a presentation before the Society of Petroleum Engineers, industry consultant Michael C. Vincent reported on evidence that fractures from hydraulically

fractured wells can communicate with nearby oil and gas wells. In spite of numerous examples of fractures intersecting with adjacent wellbores, the industry is reluctant to publish reports documenting these cases because “such information could unnecessarily alarm regulators or adjacent leaseholders.” Vincent added, “Although computing tools have improved, as an industry we remain incapable of fully describing the complexity of the fracture, reservoir, and fluid flow regimes.” These findings raise the possibility that there could be similar communications between existing fracked wells that are fractured and abandoned wells and that operators cannot accurately predict how these will interact.

• 2005 – M.K. Fisher, Vice President of Business Management at Pinnacle, a service of Halliburton that specializes in hydraulic fracturing, reported in an article published by the Society of Petroleum Engineers that a single fracture produced during a fracturing operation in the Texas Barnett Shale had unexpectedly spread 2,500 feet laterally in two directions. He also described fractures in the Barnett Shale as “extremely complex.”

These findings raise the possibility that well communication over very large distances could occur due to fractures that spread “unexpectedly.”

• October 1999 – The U.S. Department of Energy reported that there were approximately 2.5 million abandoned oil and gas wells in the U.S.

• Early 1990s – An underground waste disposal well in McKean County, Pennsylvania, contaminated groundwater when the wastewater traveled up a nearby abandoned, unmapped, and unplugged oil well. Owners of private water wells that were contaminated by the incident eventually had to be connected to a public water system.

• July 1989 – In the past, the investigative agency for Congress, the U.S. General Accounting Office (now the Government Accountability Office—GAO) studied oil and natural gas underground injection disposal wells and found serious cases of contamination. The agency reported that, in several cases, wastewater from oil and natural gas operations had migrated up into abandoned oil and natural gas wells, contaminating underground water supplies. The GAO found that “if these abandoned wells are not properly plugged—that is, sealed off—and have cracked casings, they can serve as pathways for injected brines [waste fluids from natural gas and oil drilling] to enter drinking water…. Because groundwater moves very slowly, any contaminants that

enter it will remain concentrated for long periods of time, and cleanup, if it is technically feasible, can be prohibitively costly."543

- December 1987 – The EPA submitted a report to Congress on oil and natural gas wastes in which the agency cautioned that abandoned wells must be plugged with cement in order to avoid “degradation” of ground and surface waters as a result of pressurized brine or injected waste from wastewater disposal wells migrating into aquifers, rivers, or streams.544 While the EPA did not address the potential for contamination through abandoned wells as a result of hydraulic fracturing, both hydraulic fracturing and underground injection disposal wells require underground injection of fluid under pressure, raising the potential that there is a similar risk of groundwater contamination when hydraulic fracturing occurs near abandoned wells.

- 1985 – In an investigation of 4,658 complaints due to oil and natural gas production, the Texas Department of Agriculture found that “when a water well is experiencing an oilfield pollution problem (typically, high chlorides), the pollution source is often difficult to track down. The source could be a leak in the casing of a disposal well, leakage behind the casing due to poor cement bond, old saltwater evaporation pits, or, most often, transport of contaminants through an improperly plugged abandoned well” (emphasis in original). The agency found more than a dozen confirmed or suspected cases in which pollutants had migrated up abandoned wells and contaminated groundwater. In one case, drilling wastewater migrated up an abandoned well a half mile away from where the wastewater was injected underground for disposal.545

- November 1978 – In a report later cited by the EPA in its 1987 report to Congress (cited above), the state of Illinois Environmental Protection Agency found that oil and natural gas wastes injected underground could migrate through abandoned oil and natural gas wells and contaminate groundwater. The agency wrote, “In old production areas, abandoned wells may pose a serious threat to ground water quality. Unplugged or improperly plugged wells provide possible vertical communication between saline and fresh water aquifers.”546

545 Texas Department of Agriculture, Department of Natural Resources. (1985). Agricultural land and water contamination: From injection wells, disposal pits, and abandoned wells used in oil and gas production (pp. 5, 12-15). Austin, TX: Dept. of Agriculture, Office of Natural Resources.
Flood risks

Massive land clearing and forest fragmentation that necessarily accompany well site preparation increase erosion and risks for catastrophic flooding, as do access roads, pipeline easements, and other related infrastructure. Compared to an acre of forest or meadow, an acre of land subject to fracking construction activity releases 1,000 to 2,000 times more sediment during rainstorms. In addition, in some cases, operators choose to site well pads on flood-prone areas in order to have easy access to water for fracking, to abide by setback requirements intended to keep well pads away from inhabited buildings, or to avoid productive agricultural areas. In turn, flooding increases the dangers of unconventional gas extraction, heightening the risks of contamination of soils and water supplies, the overflow or breaching of containment ponds, and the escape of chemicals and hazardous materials.

• May 25, 2016 – The removal of photos of flood-related oil spills on a Texas state-run website appears to be an effort to hide visuals that “don’t portray the energy business in a flattering light,” according to the El Paso Times Editorial Board. The photos revealed potential environmental damage caused by flooding at fracking sites. As earlier reported by the El Paso Times, many of the photos shot during Texas’ recent floods “show swamped wastewater ponds at fracking sites, presumably allowing wastewater to escape into the environment—and potentially into drinking-water supplies.”

• May 1, 2016 – Spring floods across Texas inundated oil wells and fracking sites, tipped over storage tanks, and flushed crude oil and fracking chemicals into rivers, as documented in an Associated Press story that referenced dozens of aerial photographs showing flooded production sites along the Sabine River on the Texas-Louisiana border. (The photographs were later removed from direct public access; see above.) Past president of the American Public Health Association Walter Tsou, MD, called the situation “a potential disaster.”

• June 12, 2015 – At the beginning of 2015, after a month of record-breaking rainfall, Fish and Wildlife Service officials at the Hagerman National Wildlife Refuge in Texas found that floodwaters flowing through oil production well pads in the refuge had inundated dozens of jackpumps, pipelines, and other oil and gas infrastructure, leaving bubbling, oily water and a gassy stench. In 1989, the Government Accountability Office called for “bold action” to address fossil fuel production activities incompatible with the mission of the refuge system. Subsequent reforms have been exceedingly slow, according to a report from Greenwire. In most cases, the Fish and Wildlife Service does not know how much fossil fuel is produced or spilled on refuges, and remediation efforts are inadequate. Severe weather events are expected to increase in frequency and severity as climate

change progresses, amplifying flood related concerns.

- June 20, 2014 – The *Coloradoan* reported that Noble Energy storage tanks damaged by spring flooding in Colorado dumped 7,500 gallons of crude oil, fracking chemicals, and fracking wastewater into the Cache la Poudre River, which is both a National Heritage area and a habitat for Colorado’s only self-sustaining population of wild trout. Recent high river flows had undercut the bank where the oil tank was located, which caused the tank to drop and break a valve.

- March 2014 – An extraordinary flood that struck the Front Range of Colorado killed ten people, forced the evacuation of 18,000 more, destroyed more than 1,850 homes, and damaged roads, bridges, and farmland throughout the state. More than 2,650 oil and gas wells and associated facilities were also affected, with 1,614 wells lying directly within the flood impact zone. Many of these storm-damaged facilities and storage tanks leaked uncontrollably. In a later accounting, Matt Lepore, Director of the Colorado Oil and Gas Conservation Commission, estimated the flooding had resulted in the release to the environment of 48,250 gallons of oil or condensate and 43,479 gallons of fracking wastewater from 50 different spill sites across the state. In Colorado, more than 20,850 oil and gas wells lie within 500 feet of a river, stream, or other drainage. According to Director Lepore, setback requirements that keep drilling and fracking operations away from residential areas inadvertently encourage operators to drill in unoccupied floodplains. At the same time, oil and gas operators prefer locations close to supplies of water for use in fracking. These twin factors result in a clustering of drilling and fracking operations in low-lying areas prone to catastrophic flooding.

- 2004-2013 – In at least six of the last ten years (2004, 2005, 2006, 2009, 2011, and 2013), several counties targeted for shale gas drilling in New York State have experienced serious flooding. These include the counties of Albany, Broome, Cattaraugus, Chautauqua, Chenango, Delaware, Erie, Greene, Madison, Orange, Otsego, Schoharie, Sullivan and Ulster. In at least five of the past 10 years (2004, 2005, 2006, 2009 and 2011), floods have exceeded 100-year levels in at least some of the counties.

February 7, 2013 – In its 2012 annual report to investors, oil and gas drilling company Noble Energy stated, “Our operations are subject to hazards and risks inherent in the drilling, production and transportation of crude oil and natural gas, including … flooding which could affect our operations in low-lying areas such as the Marcellus Shale.”

September 7, 2011 – The New York State Department of Environmental Conservation’s (NYS DEC) draft shale gas drilling plan recommended that drilling be prohibited within 100-year floodplains but acknowledged that many areas in the Delaware and Susquehanna River basins that were affected by flooding in 2004 and 2006 were located outside of officially designated flood zones. In 2004, 2005, 2006, 2009, and 2011, flooding in New York exceeded 100-year levels in at least some of the counties where drilling and fracking may occur.

1992 – In its Generic Environmental Impact Statement (GEIS) for oil and natural gas drilling, which was predicated on conventional drilling, the NYS DEC raised concerns that storage tanks holding drilling wastewater, spent hydraulic fracturing fluid, or other contaminants could be damaged by flooding and leak. At the time, the GEIS called for at least some of these tanks to be properly secured. Shale gas extraction via horizontal fracking would require many more storage tanks for fracking fluids and wastewater than conventional drilling operations anticipated in 1992 when the agency estimated that oil and gas wells in the state would each require 20,000 to 80,000 gallons of fracking fluid. As of 2011, the agency anticipated that high volume, horizontally fracking shale

559 New York State Department of Environmental Conservation. (2011). Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program, well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs (2-32, 33, Rep.).
562 New York State Department of Environmental Conservation. (2011). Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program, well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs (8-42, 8-43, 9-35, Rep.).
gas wells in New York State would each require 2.4 to 7.8 million gallons of fluid—roughly 100 times the 1992 estimate.564

Threats to agriculture and soil quality

Drilling and fracking take agricultural land out of production and pose risks to the agricultural sector. In California, fracking wastewater illegally injected into aquifers has threatened crucial irrigation supplies to farmers in a time of severe drought. The reuse of fracking wastewater for irrigation in California’s San Joaquin Valley raises questions about contamination of food crops via bioabsorption through roots. Studies and case reports from across the country have highlighted instances of deaths, neurological disorders, aborted pregnancies, and stillbirths in farm animals that have come into contact with wastewater. Potential water and air contamination put soil quality as well as livestock health at risk. Additionally, farmers have expressed concern that nearby fracking operations can hurt the perception of agricultural quality and nullify value-added organic certification. Fracking chemicals in agricultural soils can interact with each other in ways that slow down their biodegradation.

- June 1, 2016 – “Co-contaminant interaction effects” can occur when multiple chemicals are involved in spills of oil and gas wastewater on agricultural soils, according to a study by a Colorado State University research team. Through simulations, researchers analyzed how degradation was affected when combinations of three fracking-related organic chemicals spilled, alone or together: polyethylene glycol, a commonly used surfactant; glutaraldehyde, a biocide to prevent pipe corrosion from microbial activity; and polyacrylamide, a friction reducer. In addition to interactions between the chemicals, they analyzed the role of naturally occurring salts. Results showed that polyethylene glycol surfactants alone can break down in topsoil within 42–71 days, but, in the presence of the biocide glutaraldehyde or salt concentrations typical of fracking wastewater, their biodegradation was impeded or halted altogether. Authors emphasized that the interactions they studied account for only a fraction of the hundreds of fracking chemicals in use, but that their results “show a complex picture of co-contaminant fate and toxicity” that has, so far, been ignored in the regulatory process.565

- December 12, 2015 – A research team at the University of Aberdeen found high levels of selenium, molybdenum, and arsenic in rock samples collected from a region in northern England that has been targeted for fracking. The finding is important due to the possible risk that these toxic elements will be released into groundwater during shale gas operations. Selenium poisoning has occurred among Irish horses confined to pastures.

564 New York State Department of Environmental Conservation. (2011). Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program, well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs (ES-8, Rep.).

underlain by black shale. While small amounts of selenium are essential for metabolism, high levels (which, in the case of human consumption, is above 400 µg/day) are toxic. Possible consequences include neurotoxicity, cancer and diabetes.566

- November 23, 2015 – Gas-related impacts on Pennsylvania farmers may include pipelines criss-crossing fields and forests, as well as jeopardization of organic certification, according to a report covering a State Agriculture Department spokesman’s presentation, on the Potter County government website. The spokesman said, “steps should be taken to steer this development in ways that diminish impact on soil quality and fragmentation.” “With trees and other vegetation being cleared from pipeline rights-of-way, he noted, it’s important for the acreage to be replanted with plant species that are beneficial to agriculture—pollinating plants, as an example.”567

- October 24, 2015 – More than 180 million gallons of wastewater from oil and gas operations spilled from 2009 to 2014, according to an Associated Press analysis of data from leading oil- and gas-producing states (Texas, North Dakota, California, Alaska, Colorado, New Mexico, Oklahoma, Wyoming, Kansas, Utah and Montana). A Dallas Morning News report focused on how the resulting contamination of groundwater and soils has affected agricultural and ranching. In one case, wastewater from pits seeped beneath a cotton and nut farm near Bakersfield, California and forced the grower to remove 2,000 acres from production. In western Texas, pipeline failures and illegal dumping of frack waste contaminated ranches and pastures.568

- May 2, 2015 – The Los Angeles Times reported that farmers in Kern County, California purchased over 21 million gallons per day of treated oil field wastewater to use for crop irrigation. The article identified lingering questions about chemicals remaining after treatment and their potential impact both on the crops and those who consume them. Independent testing identified chemicals including acetone and methylene chloride, along with oil, in the treated irrigation water.569 Acetone and methylene chloride are powerful industrial solvents that are highly toxic to humans, and samples of the wastewater contained concentrations of both that were higher than those seen at oil spill disaster sites. (Chevron’s own report confirmed the presence of acetone, benzene, and xylene, though in lesser concentrations; Chevron did not appear to test for methylene chloride.570) Broader testing requirements involving chemicals covered under California’s new fracking disclosure regulations went into effect June 15, 2015.571
• April 24, 2015 – Unconventional technologies in gas and oil extraction facilitated the drilling of an average of 50,000 new fractured wells per year in North America over the past 15 years. An interdisciplinary study published in Science demonstrated that the accumulating land degradation has resulted in continent-wide impacts, as measured by the reduced amount of carbon absorbed by plants and accumulated as biomass. This is a robust metric of essential ecosystem services, such as food production, biodiversity, and wildlife habitat, and its loss “is likely long-lasting and potentially permanent.” The land area occupied by well pads, roads, and storage facilities built during this period is approximately three million hectares, roughly the land area of three Yellowstone National Parks. The authors concluded that new approaches to land use planning and policy are “necessary to achieve energy policies that minimize ecosystem service losses.”

• January 26, 2015 – Two Colorado scientists performed a detailed analysis of vegetative patterns—followed chronologically—over a selected group of well pads in Colorado managed by the U.S. Bureau of Land Management, including two undisturbed reference sites. They documented the disturbance of plant and soil systems linked to contemporary oil and gas well pad construction, and found that none of the oil and gas well pads included in the study returned to pre-drilling condition, even after 20 to 50 years. Full restoration may require decades of intensive effort.

• October 14, 2014 – State documents obtained by the Center for Biological Diversity show that almost three billion gallons of fracking wastewater have been illegally dumped into central California aquifers that supply drinking water and farming irrigation. The California Water Board confirmed that several oil companies used at least nine of 11 injection wells that connect with high-quality water sources for disposal of fracking wastewater, which included high levels of arsenic, thallium, and nitrates. The California Division of Oil, Gas and Geothermal Resources has shut down 11 oil field injection wells and is scrutinizing almost 100 others for posing a “danger to life, health, property, and natural resources.” At least one farming company has sued oil producers in part for contaminating groundwater that farms use for irrigation.

• September 6, 2014 – Al Jazeera America examined the challenges that North Dakota farmers are facing in light of wastewater spills from oil and gas development. Notably, in heavily drilled Bottineau County, some levels of chloride, from sites where an estimated 16,800 to 25,200 gallons of wastewater had seeped into the ground, were so high that

Reclaimed water impoundments sampling, Cawelo Water District Ponds, Kern River Oil Field, Kern County, California, Prepared for Chevron U.S.A. Inc. Retrieved from https://drive.google.com/file/d/0B1ccgD60cwq7dWE5Y0c2ZDh5WnM/view

they exceeded the levels measurable with the North Dakota Department of Health’s test strips. State records, testimonies from oil workers and various residents, and the decades-long failure of contaminated fields to produce crops indicate that wastewater spills are a significant hazard in the current fracking boom.575

- August 6, 2014 – The Pennsylvania Department of Environmental Protection found that leaks of fracking wastewater from three impoundments contaminated soil and groundwater. The findings prompted the state to issue a violation and increase testing.576

- August 5, 2014 – Michelle Bamberger, a veterinarian and researcher, and Robert Oswald, a professor of molecular medicine at Cornell University, published a book that describes their research into the impacts of drilling and fracking on agriculture and animal health. They detail results of 24 case studies from six gas drilling states, including follow-up on cases they previously published in the peer-reviewed literature, raising concerns about the effects of drilling and fracking on agriculture and the health of animals.577

- August 1, 2014 – At least 19,000 gallons of hydrochloric acid spilled during completion of a fracking well on an alfalfa farm in Kingfisher County, Oklahoma. The Oklahoma Corporation Commission reported concerns about rain pushing chemical runoff into a nearby creek that flows into the town of Hennessey’s water system. The responsible company, Blake Production, planned to pay for the alfalfa crop for six years. The landowner and a neighbor were pursuing litigation.578

- May 4, 2014 – In an analysis of state data from Colorado, the Denver Post reported that fracking related to oil and gas drilling is putting soil quality and farmlands at risk due to significant amounts of toxic fluids penetrating the soil. According to report, 578 spills were reported in 2013, which means that, on average in the state, a gallon of toxic liquid penetrates the ground every eight minutes. Colorado State University soil scientist Eugene Kelly, said that the overall impact of the oil and gas boom “is like a death sentence for soil.”579

• November 28, 2012 – In conjunction with the Food & Environment Reporting Network, *The Nation* reported that serious risks to agriculture caused by fracking are increasing across the country and linked these concerns to risks to human health.\(^{580}\)

• January 2012 – A study of gas drilling’s impacts on human and animal health concluded that the drilling process may lead to health problems. The study reported and analyzed a number of case studies, including dead and sick animals in several states that had been exposed to drilling or hydraulic fracturing fluids, wastewater, or contaminated ground or surface water.\(^{581}\) The researchers cited 24 cases in six states where animals and their owners were potentially affected by gas drilling. In one case, a farmer separated 96 head of cattle into three areas, one along a creek where fracking wastewater was allegedly dumped and the remainder in fields without access to the contaminated creek; the farmer found that, of the 60 head exposed to the creek, 21 died and 16 failed to produce, whereas the unexposed cattle experienced no unusual health problems. In another case, a farmer reported that of 140 head of cattle exposed to fracking wastewater, about 70 died, and there was a high incidence of stillborn and stunted calves in the remaining cattle.\(^{582}\)

• January 2011 – U.S. Forest Service researchers reported dramatic negative effects on vegetation caused by the drilling and fracking of a natural gas well in an experimental forest in northeastern West Virginia.\(^{583}\) In June 2008, the researchers found browning of foliage near the well pad, a lack of ground foliage, and that many trees nearby had dropped their foliage. They attributed these impacts to the loss of control of the wellbore on May 29, 2008, which caused an aerial release of materials from the well. Trees showed no apparent symptoms the following summer.\(^{584}\) However, the researchers also found “dramatic impacts on vegetation” where drilling and fracking wastewater had been sprayed on the land as a disposal technique following completion of the well. Just after the spraying of approximately 60,000 gallons of wastewater at the first disposal site, the Forest Service researchers found 115 damaged trees and other evidence of harm. This figure grew to 147 trees almost a year later.\(^{585}\) At a second site, where about 20,000

gallons of wastewater was sprayed, the damage was less dramatic, yet the researchers still found “considerable leaf browning and mortality of young northern red oak seedlings.” The researchers concluded that the spraying of the drilling fluids resulted in an “extreme” dose of chlorides to the forest.

- May 2010 – Pennsylvania’s Department of Agriculture quarantined 28 cows in Tioga County after the animals wandered through a spill of drilling wastewater and may have ingested some of it. The Department was concerned that beef eventually produced from the cows could be contaminated as a result of any exposure. In May 2011, only ten yearlings were still quarantined, but the farmer who owned the cows, Carol Johnson, told National Public Radio that of 17 calves born to the quarantined cows in the spring of 2011, only six survived, and many of the calves that were lost were stillborn. “They were born dead or extremely weak. It’s highly unusual,” she said, continuing, “I might lose one or two calves a year, but I don’t lose eight out of eleven.”

- March 2010 – A Pennsylvania State Extension analysis of dairy farms in the state found a decline in the number of dairy cows in areas where fracking was prevalent. Pennsylvania counties that had both more than 10,000 dairy cows and more than 150 Marcellus Shale wells experienced a 16-percent decline in dairy cows between 2007 and 2010.

- April 28, 2009 – Seventeen cows in Caddo Parish, Louisiana died within one hour after apparently ingesting hydraulic fracturing fluids spilled at a well that was being fractured. “It seemed obvious the cattle had died acutely from an ingested toxin that had drained from the ‘fracking’ operation going on at the property,” Mike Barrington, a state veterinarian said in a document obtained from the state Department of Environmental Quality by the Times-Picayune.

- August 1977 – A paper in the Journal of Arboriculture describes how natural gas leaks in soil can damage plants and crops. The paper notes that vegetation dies in the vicinity of

natural gas leaks. Due to the oxidation of methane by methane-consuming bacteria, gas leaks drive down the oxygen concentration to extremely low levels and cause carbon dioxide concentration to rise. The resulting low oxygen concentration is the greatest contributing factor in the death of trees and other vegetation near natural gas leaks.\(^{592}\)

Threats to the climate system

Methane is a powerful greenhouse gas. An increasing number of studies reveal high levels of methane leaks from gas drilling, fracking, storage, and transportation, undermining the notion that natural gas is a climate solution or a transition fuel. These studies contradict inventories prepared by the U.S. Environmental Protection Agency (EPA), which, through early 2016, continued to underestimate the impacts of methane and natural gas drilling on the climate. In April 2016, the EPA raised methane emissions estimates for oil and natural gas operations by 34 percent, retroactively increased estimates of past methane losses, and named the oil and gas industry as the single leading source of methane emissions to the atmosphere. Multiple lines of evidence point to the central role of unconventional oil and gas extraction as the driver of recent increases in global greenhouse gases, especially methane. These include the atmospheric pattern of increased methane concentrations directly over intensively fracked areas of the United States; sharp upticks in global methane and co-occurring ethane levels that correspond to the onset of the U.S. fracking boom; and documentation of catastrophic amounts of methane released from storage facilities and other “super-emitting” sites. An influential 2013 study that reported low rates of methane leakage from oil and gas operations was revealed to have relied on flawed instrumentation that can underestimate methane loss. Further, the widely touted claim that the U.S. fracking boom has helped drive recent declines in carbon dioxide emissions in the United States has been upended by research showing that almost all of the CO\(_2\) emission reductions between 2007 and 2009 were the result of economic recession rather than coal-to-gas fuel switching, as was previously presumed. Other lines of research suggest the extremely important role that technological innovations related to energy efficiency can play in reducing reliance on fossil fuels and speeding a transition to renewable energy sources. Drilling, fracking, and expanded use of natural gas threaten not only to exacerbate climate change but also to stifle investments in, and expansion of, renewable energy.

- July 11, 2016 – A group of 130 environmental and health organizations signed a formal complaint with the Inspector General of the EPA that assailed a pivotal 2013 study published in the *Proceedings of the National Academies of Sciences* and led by University of Texas chemist David T. Allen. The letter accused Allen of “systemic fraud, waste, and abuse” for his reliance on an inaccurate measurement device that was known to underestimate methane levels. Partially funded by the oil industry, Allen’s study reported very low methane emission rates as part of a large survey of 190 drilling and fracking sites across the nation. That flawed study was influential, said complainants, in

preventing EPA from recognizing the magnitude of methane leakage from drilling and fracking operations.593 (See also the entry below for March 24, 2015.)

• May 25, 2016 – As part of the first field study to directly measure methane emissions from the heavily drilled Bakken Shale formation in northwestern North Dakota, a team led by atmospheric chemist Jeff Peischl at the National Oceanic and Atmospheric Administration (NOAA) flew research aircraft over the region in May 2014. The researchers derived a methane emission rate of 275,000 tons of methane per year, which is similar to the rate of methane leakage in the Front Range area of Colorado but significantly lower than previous studies of the Bakken area that relied on satellite remote sensing data during an earlier time period (2006-2011). Analyzing the chemical composition of air samples, the NOAA team determined that almost all of the methane originated with oil and gas operations, rather than with natural or agricultural sources, and estimated a leakage rate of 4.2-8.4 percent.594 Scaled to production, this emission rate is slightly lower than that estimated by U.S. Environmental Protection Agency (EPA) in its recently revised inventory.595,596 (See April 15, 2016 entry below.)

• April 15, 2016 – In its 21st annual greenhouse gas inventory, which includes 2014 data, the EPA increased its leakage assessment from oil and gas operations by 34 percent. For oil production alone, the EPA more than doubled its estimates of methane emissions. Further, in an admission that the agency had been historically underestimating methane leaks, the EPA also retroactively increased estimates of past emissions from the fossil fuel sector as expressed in prior inventories.597,598 In an accompanying news release, the agency said, “Data on oil and gas show that methane emissions from the sector are higher than previously estimated. The oil and gas sector is the largest emitting-sector for methane and accounts for a third of total U.S. methane emissions.”599 Past EPA inventories had identified livestock as the number one source of U.S. methane. These

annual inventories fulfill the EPA’s obligations under the United Nations Framework Convention on Climate Change, signed and ratified by the United States in 1992, and attempt to identify and quantify U.S. anthropogenic sources and sinks of greenhouse gases for the time period 1990 and forward. The upward revision in both past and current inventories is a reflection of changing methodologies for measuring methane leaks. Older methods included the incorporation of “bottom-up” data supplied by the oil and gas industry, without attention to high-emitting or super-emitting sources or possible sources of error introduced by flawed measuring equipment. In addition, the use of a Global Warming Potential multiplier of 25 for methane, which is based on a 100-year time horizon, rather than 86 for a 20-year time horizon, has come under sustained criticism given the urgency of the climate crisis.

• April 7, 2016 – Since 2009, corresponding to the advent of the U.S. shale gas boom, North American ethane emissions have increased by 5 percent per year. This trend represents a reversal of a previous multi-decade decline (mid-1980s until the end of the 2000s) in the abundance of atmospheric ethane that had been attributed to the reduction of fugitive emissions from fossil fuel sources. These are the findings of an international research team, which analyzed remote sensing data gathered by the Network for the Detection of Atmospheric Composition Change at globally distributed ground-based sites. Ethane is a volatile organic compound (VOC) that readily reacts with nitrogen oxides in the presence of sunlight to create ground-level ozone (smog). Also a potent greenhouse gas, ethane is co-released along with methane from drilling and fracking sites. The source of two-thirds of the ethane in Earth’s atmosphere is leakage from natural gas wells and pipelines. Because ethane is co-emitted with methane and can serve as a marker for it, this documentation of a sharp, recent uptick in atmospheric ethane is part of a larger body of evidence suggesting that U.S. drilling and fracking operations are driving up global methane levels. (See also entry dated June 13, 2016 in Air Pollution section.)

• April 5, 2016 – A research team using infrared cameras and helicopters demonstrated that between 1 and 14 percent of oil and gas well pads surveyed were high emitters of hydrocarbons and volatile organic compounds, with the greatest number observed in oil producing areas and in areas with horizontal drilling. While some emissions were

intentional or part of routine maintenance operations, fugitive, unplanned releases (as from malfunctioning equipment) were also common, as were combustion emissions (as from flares and compressor engine exhaust). Tank vents and hatches were the origin of the vast majority (>90 percent) of detected large emission sources, deeply undercutting the assumption in the EPA’s Oil & Gas Emission Estimation Tool of 100 percent capture efficiency by tank control systems. While emissions tended to be higher during the first few months of well production, predicting which wells or other sources would become high emitters was not possible. The lead author, speaking to InsideClimate News, concluded that the work “really demonstrates the importance of things like continuous detection or frequent monitoring to find these high emission sites.”

• March 10, 2016 – Attempting to explain a methane plateau between 1999 and 2006 within otherwise almost continuously increasing levels of atmospheric methane since the dawn of the industrial revolution, an international team of atmospheric scientists reconstructed the global history of methane and used isotopic carbon fingerprinting to parse the sources of its emission. Thermogenic emissions were assumed to result from fossil-fuel sources, while biogenic sources were assumed to arise from wetlands and agricultural operations. Based on a geographic distribution of methane revealed by remote sensing, the authors concluded that agricultural emissions, especially increases in livestock inventories and rice cultivation, were the most likely drivers of observed global methane increases from 2006 to 2014. These results stand in contrast to other contemporaneous and recent studies that have supplied evidence for the role of oil and gas extraction in the recent upsurge in atmospheric methane. (See entry for February 16, 2016 below.)

• February 16, 2016 – A Harvard-led team used both satellite retrievals and surface observations to estimate that methane emissions in the United States increased by more than 30 percent over the past twelve years. These findings, which contradict the 10 percent decline reported by the EPA, suggest that the United States could be responsible for 30-60 percent of the recent global spike in atmospheric methane. Since 2015, research on atmospheric methane has frequently relied on an “inverse method” to optimize emission estimates by combining “bottom-up” and “top-down” data, yet data

from different sources have not yielded consistent estimates of methane emissions and levels. Three major sources (Wecht et al. [2014], Miller et al. [2013], and Turner et al. [2015]) all found maximum emissions in the South Central United States, with spatial overlaps that made separating livestock sources from oil and gas sources difficult. Taking into account the time period investigated by differing studies reveals an increasing trend in methane emissions, with an increase of 38 percent from 2004 to 2011, a period of greatly increasing drilling activity. This trend is confirmed by analyzing temporal trends in satellite data. While this account still differs from the EPA’s inventory in 2014 showing a 3 percent decrease in oil and gas emissions over that same time period, the EPA’s data presumed better control of measured leaks, which may not correlate with better control of overall emissions.

January 29, 2016 – Working in the Marcellus Shale Basin, a Carnegie Mellon research team compared methane emissions from older conventional gas wells (those that were vertically drilled) and newer, unconventional gas wells (those that combined fracking with horizontal drilling). Measured by facility, the mean emission rate for unconventional wells was 23 times higher than that of conventional wells. This difference, in part, was attributed to the larger size of unconventional well pads, which, typically, have multiple wells per pad, more ancillary equipment, and produce more gas. When corrected for production, the conventional wells leaked more—that is to say, they lost a comparably larger fraction of methane per unit of production—likely due to “unresolved equipment maintenance issues.” All together, the authors concluded, these new emissions data show that the recently instituted Pennsylvania Department of Environmental Protection’s methane emissions inventory substantially underestimates facility-level methane emissions. Five unconventional well sites included in this study leaked 10-37 times more methane than estimated in the state inventory.610

January 25, 2016 – Cornell University scientists introduced an innovative methodology for assessing potential climate impacts of alternative choices and used it to demonstrate that emissions of the two most important greenhouse gases (carbon dioxide and methane), calculated as time-integrated radiative forcing, are lower with heat pump water heaters than any other means of heating water. Further, their calculations showed that heat pump water heaters powered by coal-generated electricity achieve greater net climatic benefit than heaters powered by natural gas, while even greater benefits may be achieved by combining heat pump water heaters with electricity generated by renewable sources. The authors proposed and justified a methane emission rate of 3.8 percent for conventional shale gas, which is therefore offered as a lower bound for future, tightly controlled methane emissions from unconventional gas activities. The authors also made their web-based tool for evaluating the greenhouse gas footprint of reference and alternative technologies and its source code available to the public (at http://www.eeb.cornell.edu/howarth/methane/tool.htm).611

December 22, 2015 – To reconcile troubling divergences in published estimates of methane emissions, in which “top-down” estimates, based on atmospheric or satellite sampling, often exceed “bottom-up” estimates, based on ground-level sampling or individual source reports, researchers used a combination of repeated mass balance measurements plus ethane fingerprinting to improve top-down estimates and incorporated a more complete and detailed count of facilities to improve bottom-up estimates. The results, as demonstrated in the Barnett Shale oil and gas-producing region of Texas, revealed a convergence of estimates to within 10 percent for fossil methane and 0.1 percent for total methane, with predicted methane emissions 90 percent larger than those estimated by the EPA’s Greenhouse Gas Inventory. Exclusion of additional problematic studies might have resulted in even greater convergence and higher estimates. The agreement between top-down and bottom-up estimates demonstrates that well-designed surveys using either approach can be useful, with spatially resolved bottom-up estimates pointing toward production sites as the source of 53 percent of emissions, compressor stations 31 percent of emissions, and processing plants 13 percent of emissions. The Barnett shale emission rate of 1.5 percent calculated in this study is low enough (less than 3 percent) to suggest that gas fired electricity production in this region causes less climate forcing than coal-fired electricity, but it is high enough (greater than 1 percent) to argue against the conversion of diesel powered freight trucks to compressed natural gas. Gas production practices and heavier activity in other basins may lead to higher emission rates, as may the storage and long-distance or very long-distance transmission of natural gas.

December 22, 2015 – Writing for Environment & Energy Publishing, journalist Gayathri Vaidyanathan reported on efforts by climate scientists to convince the United Nations to stop expressing the heat-trapping potential of methane over a 100-year time frame and instead use a twenty-year time frame when generating global warming potential (GWP), the conversion factor that allows policymakers to compare methane’s ability to trap heat with that of carbon dioxide. Methane is a far more potent heat-trapping gas than is carbon dioxide, but it is also shorter lived. By convention, policymakers have used a 100-year time frame when calculating global warming potentials. However, there is no scientific reason to do so, and many scientific critics argue that choosing this time scale veils the true climate impacts of natural gas and “makes the gas appear more benign than it is.”

November 25, 2015 – Using reports from countries and companies with proved reserves of recoverable oil, natural gas, and coal, an analysis published in Global Environmental Change shows that full production of these resources would use up 160 percent of the

world’s estimated remaining carbon budget (designed to restrict anthropogenic climate change to equal to or less than 2°C). While 76 percent of reserves are owned by states or state entities, the relatively smaller amount of reserves owned by investors poses the greater immediate threat, since those companies are more likely poised to produce, refine, and deliver fossil fuels to global markets in the near term. However, exploitation of existing proved reserves controlled by the private sector alone does not lead to warming above the 2°C limit, if it is not accompanied by exploration for and development of new reserves. Future considerations of fossil fuel use should focus not only on reducing private sector contributions but also on reducing contributions from countries that have historically dominated or currently dominate emissions, and especially nation-states with large undeveloped reserves.615

- November 9, 2015 – Including data available through 2014, the World Meteorological Organization (WMO) reported that globally averaged levels of carbon dioxide, methane, and nitrous oxide reached new highs in 2014, with values, respectively, “143%, 254% and 121% of pre-industrial (1750) levels.”616,617 While the atmospheric increase in carbon dioxide has slowed, methane and nitrous oxide levels continue to increase. Measurements from the WMO’s Global Watch Programme point to wetlands in the tropics and anthropogenic sources at mid-latitudes of the northern hemisphere as the sources of increased methane over the past decade.

- October 8, 2015 – As a foundation for policy recommendations, Cornell University biogeochemist Robert Howarth summarized and analyzed the evidence documenting the magnitude of methane emissions related to oil and gas development in the United States since 2007. With estimated emission rates ranging from 3.8 to 12 percent, the high radiative forcing of methane over a twenty-year period prevents natural gas from serving as a bridge fuel. Instead of further investments in natural gas, Howarth proposes a rapid transition to electric powered vehicles for transportation, high-efficiency heat pumps for space and water heating, and imposition of a methane tax that is roughly 86 times higher than currently proposed carbon taxes, which typically address only carbon dioxide.618 Howarth also noted that the EPA “has seriously underestimated the importance of methane emissions in general—and from shale gas in particular.”619

• August 4, 2015 – A developer of high flow sampling technology determined that a commonly used instrument to quantify methane leakage has unreliable sensors and malfunctions in ways that vastly underreport emissions by factors of three to five. More than 40 percent of the compiled national methane inventory may be affected by this measurement failure, according to the author of this study. The implications of this discovery for our understanding of system-wide methane leakage rates from drilling and fracking operations are not known, but they do call into question the results of at least one major study of methane emissions that relied on this device for collecting data. This is the second of two studies that finds that the primary tool approved by the U.S. EPA for measuring and reporting emissions of methane fails to function properly when used as directed by the manufacturer. (See also entry below dated March 24, 2015.)

• July 21, 2015 – An international team of researchers investigated the claim that the fracking boom, which has dramatically increased supplies of natural gas in the United States, is the main driver of the modest decline in carbon dioxide emissions since 2007. Conventional wisdom, as expressed by the Third National Climate Assessment of the U.S. Global Change Research Program, attributes the drop in emissions to a shift away from carbon dioxide-intensive coal and toward natural gas in power plants. But this team analyzed the sources of change in carbon dioxide emissions and, using a tool called input-output structural decomposition analysis, documented that the economic downturn, not fuel switching in the power sector, was the explanation for declining carbon dioxide emissions since 2007. The single biggest impact on U.S. emissions was changes in the volume of goods and services consumed. Between 2007 and 2013, driven by a huge drop in the volume of capital investment, emissions associated with capital formation decreased by almost 25 percent. During the same period, emissions related to household consumption decreased by 11 percent.

• July 7, 2015 – A scientific opinion piece by Environmental Defense Fund researchers involved in a group of 11 studies on methane emissions in Texas’ Barnett Shale provided an overview and orientation to new research that either measured or estimated methane emissions from oil and gas operations. Research from both top-down estimates (based on measuring atmospheric methane or related compounds at regional or larger scales) and bottom-up measurements (made directly from components or at ground level near studied sites) demonstrated that methane emissions from oil and gas operations in the Barnett Shale region exceeded the emissions expected from the EPA’s greenhouse gas inventory, which relies on industry self-reporting and excludes many compressor stations. The new research detailed the importance of addressing high-emitting landfills and natural gas facilities (“super-emitters”) and malfunctioning equipment in efforts to control ongoing methane emissions.

May 28, 2015 – A comprehensive working paper from the New Climate Economy initiative of the Global Commission on the Economy and Climate at Stockholm Environment Institute found that the experience in the United States of substituting natural gas for oil was unlikely to be replicated around the globe and probably will not provide climate benefits unless coupled with strict controls on methane leakage, limits on total energy use, and policies to prevent the displacement of non-fossil fuel energy by methane. Citing multiple studies of the net climate impact of “more abundant, cheaper natural gas supplies,” the Commission concluded that “both globally and for the United States, the increase in emissions from the scale effect [from increased energy consumption boosted by cheap natural gas and loss of potentially more expensive lower carbon approaches] fully offsets the emission benefits from the substitution effect, net of methane leakage.”

March 24, 2015 – A University of Cincinnati researcher and independent engineers documented that the Bacharach Hi-Flow Sampler (BHFS)—one of the only tools approved by the EPA for measuring and reporting emissions of methane from natural gas transmission, storage, and processing facilities—failed to function properly when used as indicated by the manufacturer. The BHFS, unless recalibrated daily and running revised software (or taking measurements in a nearly pure methane environment, which is exceedingly rare in the field), misreported high levels of natural gas by as much as an order of magnitude lower than actual concentration. A reanalysis of 2011 results from the City of Fort Worth Air Quality Study revealed at least seven instances for which the BHFS indicated sample concentrations at or below 5 percent when more reliable canister methane readings indicated concentrations that ranged from 6.1 percent to 90.4 percent. Inaccurate measurements like these can contribute to the discrepancy between “top-down” and “bottom-up” measurements of methane, with ground-level measurements from the BHFS potentially producing reports of falsely low emissions. This study was followed by another that further documented malfunctions in the BHFS device and called into question the results of a landmark 2013 survey of methane emissions at 190 drilling and fracking sites across the United States. That 2013 survey, from the University of Texas, relied on the BHFS device for collecting data and found very low leakage rates. (See also entry above dated August 4, 2015.)

• March 20, 2015 – A team led by Bruno Franco from the University of Liege in Belgium discovered an abrupt uptick in ethane levels at a mountaintop station in the Swiss Alps that is far removed from local pollution sources. In a later comment about this discovery, Franco said, “Since 2009, we observed increases of 5% per year here—it was completely unexpected.” The team attributed the trend reversal to the natural gas boom in North America. Ethane is released together with methane from drilling and fracking operations and serves as a proxy for it. (See also the entry above for April 7, 2016.)

• March 9, 2015 – With specialized equipment in a mobile van, University of Colorado, the National Oceanic and Atmospheric Administration (NOAA), Environmental Defense Fund, and independent researchers continuously measured methane and ethane from public roads at sites downwind of potential emission sources, such as natural gas production wellheads, processing plants, and compressor stations. The sampling method and modeling allowed capture of multiple “accidental” plumes, acquired during long drives across the study region between planned measurements near large facilities. Sampling was not random but documented a large number of facilities with low methane emission rates (equal to or less than 10 kg/hr), with a smaller yet important number of facilities showing much higher emissions. Although the largest measured emission in this study (1,360 kg/hr) corresponded to approximately $1.2 million in lost revenue per year, the authors noted that, in this industry, the “leak fraction” or “proportional loss” levels they documented would generally translate into only a small proportion of lost revenue, probably not sufficient to prompt strong energy-sector self-regulation.

• March 1, 2015 – Using a simulation model, the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, writing for Germany’s Federal Environmental Agency, found that shale gas was not a cheap option to reduce global greenhouse gas emissions. Multiple comparison simulations found that shale gas availability, especially in the short-term, tends to lead to higher emissions due to lower energy prices inducing higher use. The net result is higher costs to achieve compliance with climate targets. In this model, shale gas was also found to compete in an unhelpful way with renewable energy sources, resulting in reduced use of renewable energy sources and reduced investment in energy efficiency measures.

January 8, 2015 – Using a single integrated modeling program that incorporates detailed estimates of the world’s reserves of oil, gas, and coal and is consistent with a wide variety of prior modeling approaches, University College London researchers demonstrated that, around the world, “a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050” in order to meet a target of less than or equal to a 2 degree Celsius rise in global temperature. In addition, “development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming” below the 2 degree threshold. Calling for a “stark transformation” of our understanding of fossil fuel availability, the authors noted that, in a climate-constrained world, fears of scarcity of fossil fuels must be superseded by a commitment to preventing overuse of existing resources and reserves.631

November 26, 2014 – Stanford University and independent researchers compared coal and natural gas for power generation and concluded that the question of “whether natural gas plants are better than coal plants cannot be answered in the general case.” During the period of plant operation, “natural gas plants can produce greater near-term warming than coal plants, with the same power output.” They found that over time, natural gas plants can produce some reduction in near-term warming, but only if life cycle methane leakage rates are low and power plant efficiency is high. Relative to coal, there is the potential that “deployment of natural gas power plants could both produce excess near-term warming (if methane leakage rates are high) and produce excess long-term warming (if the deployment of natural gas plants today delays the transition to near-zero emission technologies).”632

October 23, 2014 – Adding to the debate about natural gas and climate change, a multi-center, international research team used a sophisticated, integrated approach to the global energy-economy-climate systems question and found no climate benefit to natural gas over other fossil fuels. As summarized by the editor of Nature,

The development of hydraulic fracturing technologies has led to rapid growth in the use of natural gas as an energy source. Some evidence has suggested that this growing adoption of natural gas might lead to a reduced greenhouse gas burden and consequent mitigation of climate change. This collaboration between five energy–climate modelling teams show that instead—under a scenario of abundant natural gas availability—increased consumption will have little or no impact on climate change.” The authors concluded, “although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.”633

• October 6, 2014 – Utilizing satellite data for the Bakken and Eagle Ford formations, scientists from Germany, the United Kingdom, and the University of Maryland confirmed that higher “top-down” estimates of fugitive methane leaks from oil and gas fields (which are obtained via tall tower flask samples, aircraft measurements, and road surveys) are more accurate than lower “bottom-up” estimates (which are obtained by summing emissions from different types of known sources at sites provided by participating utility companies). According to “bottom-up” estimates, the average U.S. leakage rate ranges from 1.2 – 2.0 percent. But satellite data show much higher leakage rates: 10.1 percent (± 7.3 percent) and 9.1 percent (± 6.2 percent), for the Bakken and Eagle Ford formations, respectively. These higher estimates indicate that current inventories likely underestimate fugitive emissions and call into question any immediate climate benefit from switching from coal to natural gas. Similar results were seen for the Marcellus shale region, but as a result of technical and geographical limitations, the authors declined to quantify their results, pending future studies with enhanced equipment.634

• September 24, 2014 – According to a paper published by scientists from the University of California and Stanford University, “… without strong limits on [greenhouse gas] emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.” The study builds on previous research by examining natural gas in a range of supply curves, with a tested economic model, and across three different types and levels of climate policy. Researchers found that abundant natural gas, even with low rates of methane leakage, does little to reduce—and may increase—greenhouse gases. They conclude that delaying deployment of renewable energy technologies “may actually exacerbate the climate change problem in the long term.”635

• September 2, 2014 – Analyzing the level of greenhouse gas emissions attributable to electricity from natural-gas-fired power plants and coal-fired power plants, economist Chris Busch and physicist Eric Gimon conclude that, over short time frames and at high rates of leakage, natural gas offers little benefit compared to coal and could exacerbate global warming. Although Busch and Gimon acknowledge that natural gas offers some reductions in greenhouse gas emissions over longer time frames, they point out that such reductions are not large enough for natural gas to play an expanded role in efforts to manage emissions. They conclude that under the best of circumstances, natural gas-fired electric power offers a modest benefit toward abating climate change, while if poorly developed (i.e., with extensive methane leaks, estimated by these authors to be on the order of 4 percent or higher), or if used to displace energy efficiency or renewable energy, natural gas could seriously contribute to increased greenhouse gas emissions.636

August 5, 2014 – Reporting in Scientific American, the science news organization Climate Central outlined the natural gas-related factors that threaten any ability to achieve climate goals through the proposed Clean Power Plan. “No one has any idea how much methane is leaking from our sprawling and growing natural gas system. This is a major problem, because without a precise understanding of the leak rate natural gas could actually make climate change worse.” Referring to an interactive Climate Central tool that runs various methane leakage scenarios, the article notes that, even given modest leak rates and an aggressive transition, “we could still end up with little or no climate benefits by 2030 after an enormous financial and political investment in natural gas.”

July 25, 2014 – EPA’s Office of Inspector General reports that the agency “has placed little focus and attention on reducing methane emissions from pipelines in the natural gas distribution sector.” According to this report, the EPA acknowledged in 2012 that leaks from natural gas pipelines “accounted for more than 13 million metric tons of carbon dioxide equivalent emissions,” are almost 100 percent methane, and represent more than 10 percent of total methane emissions from natural gas systems in the United States. Nevertheless, as report went on to note, the EPA does not have the partnerships in place to begin controlling methane leaks, such as with the Pipeline and Hazardous Materials Safety Administration, nor has it conducted a comprehensive analysis of emissions factors, relying instead on a 1996 study with a “high level of uncertainty.”

May 15, 2014 – A recent review of existing data on life cycle emissions of methane from natural gas systems concluded that, as a strategy for addressing climate change, natural gas is a “bridge to nowhere.” The review found that, over a 20-year time frame, natural gas is as bad as or worse than coal and oil as a driver of climate change. Referencing this review and other recent studies, Bloomberg Business News reported that the EPA has underestimated the impact of methane leakage resulting from the production, transmission, and distribution of natural gas and is using outdated estimates of methane’s potency compared to more recent estimates from the Intergovernmental Panel on Climate Change (IPCC).

April 25, 2014 – A reassessment of the heat-trapping potential of greenhouse gases revealed that current methods of accounting underestimate the climate-damaging impact of methane pollution from all sources, including drilling and fracking operations.
• April 14, 2014 – A study from researchers at Purdue University, NOAA, Cornell University, University of Colorado at Boulder, and Pennsylvania State University, published in *Proceedings of the National Academy of Sciences* found very high levels of methane emissions above many wells being drilled at fracking sites in Pennsylvania. Levels were 100 to 1,000 times above the estimates of federal regulators, who have always assumed very low methane emissions as wells are drilled.\(^{642, 643}\)

• February 26, 2014 – The United Nations’ top environmental official, Achim Steiner, argued that the shale gas rush is “a liability” in efforts to slow climate change and that a switch from coal to natural gas is delaying critical energy transition to renewables.\(^{644}\)

• February 13, 2014 – A major study in *Science* by Stanford University, Massachusetts Institute of Technology, and the U.S. Department of Energy found that methane leaks negate any climate benefits of natural gas as a fuel for vehicles, and that the EPA is significantly underestimating methane in the atmosphere.\(^{645}\) Lead author Adam R. Brandt told *The New York Times*, “Switching from diesel to natural gas, that’s not a good policy from a climate perspective.”\(^{646}\) This study also concluded that the national methane leakage rate is likely between 3.6 and 7.2 percent of production.

• January 15, 2014 – As reported by the *Guardian*, a new study by BP concluded that shale gas “…will not cause a decline in greenhouse gases” and will do little to cut carbon emissions.\(^{647}\)

• December 30, 2013 – An analysis of fracking-related truck transportation in the Susquehanna River Basin in Pennsylvania found that greenhouse gas emissions from frack water and waste hauling operations were 70–157 metric tons of CO\(_2\) equivalent per gas well.\(^{648}\)

• November 11, 2013 – In a letter to California Governor Jerry Brown, twenty of the nation’s top climate scientists warned that pro-fracking policies will worsen climate disruption and harm California’s efforts to be a leader in reducing greenhouse gas emissions. The letter called on Governor Brown to place a moratorium on fracking. On November 21, 2013, a group of Governor Brown’s former policy and campaign advisors made a similar request in light of concerns about the effects of fracking on climate change and water pollution.

• October 18, 2013 – A team of researchers from multiple institutions including Harvard, the University of Michigan, and NOAA reported that methane emissions due to drilling activities in the south-central U.S. may be almost five times greater than reported by the world’s most comprehensive methane inventory. “These results cast doubt on the US EPA’s recent decision to downscale its estimate of national natural gas emissions by 25-30 percent,” the authors wrote. As the New York Times reported, “The analysis also said that methane discharges in Texas and Oklahoma, where oil and gas production was concentrated at the time, were 2.7 times greater than conventional estimates. Emissions from oil and gas activity alone could be five times greater than the prevailing estimate.”

• October 18, 2013 – A major study spearheaded by Stanford University’s Energy Modeling Forum concluded that fracking and the shale gas revolution will have no long-term climate benefit. The study brought together a working group of about 50 experts and advisors from companies, government agencies, and universities, and modeling teams from 14 organizations. The study also found that build-out of infrastructure for fracking and natural gas will discourage efforts to conserve energy and boost efficiency. The study did not examine methane leaks in order to weigh in on the short-term climate impacts of natural gas.

• October 11, 2013 – As reported in the Guardian, key climate scientists argued that the growth in fracking across the United States is hurting the United States’ credibility on climate change.

October 2, 2013 – Updated measurements from the IPCC determined that methane is even worse for the climate than previously thought. The IPCC determined that methane is 34 times more potent as a greenhouse gas in the atmosphere than CO2 over a 100-year timeframe, and 86 times more potent over a 20-year timeframe.655

September 27, 2013 – The IPCC formally embraced an upper limit on greenhouse gases for the first time, warning that the world will exceed those levels and face irreversible climatic changes in a matter of decades unless steps are taken soon to reduce emissions. The IPCC reported that humanity faces a “carbon budget”—a limit on the amount of greenhouse gases that can be produced by industrial activity before irreversible, damaging consequences—of burning about a trillion metric tons of carbon. The world is on track to hit that by around 2040 at the current rate of energy consumption.656

August 12, 2013 – A New Scientist review of the science on fracking and global warming concluded that fracking could accelerate climate change rather than slow it.657

May 28, 2013 – A research team led by Jeff Peischl, an associate scientist at NOAA and the Cooperative Institute for Research in Environmental Sciences, estimated that methane leakage from Los Angeles-area oil and gas operations was about 17 percent.658, 659

May 2013 – A group of scientists and journalists studying climate change, led by energy systems analyst Eric Larson of Princeton University and the news organization Climate Central, reported that the often-purported 50 percent climate advantage of natural gas over coal is unlikely to be achieved over the next three to four decades given methane leaks and other factors.660 The 50 percent claim is based on the fact that natural gas produces half as much carbon dioxide when burned than coal, but it ignores the significant greenhouse gas impacts of methane leakage that occurs throughout the life cycle of natural gas production, transmission, and distribution.

• January 2, 2013 – A NOAA study found methane emissions from oil and gas fields in Utah to be as high as nine percent of production. These levels are considered extremely damaging to the climate.661

• November 2012 – A review by the United Nations Environment Programme found that emissions from fracking, as well as other unconventional natural gas extraction methods, could increase global warming in the short-term and be comparable to coal over a 100-year timeframe.662

• November 2012 – The International Energy Agency (IEA) found that a large natural gas boom—even with improvements in place to reduce leakage—would eventually lead to greenhouse gas concentrations of 650 parts per million and a global temperature rise of 3.5 degrees Celsius, far exceeding the 2 degree Celsius limit which is critical to avoid the most severe effects of climate change.663

• May 29, 2012 – The Guardian summarized a special report on natural gas by the IEA: “A ‘golden age of gas’ spurred by a tripling of shale gas from fracking and other sources of unconventional gas by 2035 will stop renewable energy in its tracks if governments do not take action.”664

• February 2012 – A study published in Environmental Research Letters found that the carbon dioxide emitted from the burning of natural gas—even neglecting the impacts of methane leakage—contributes significantly to greenhouse gas emissions that are driving climate change.665

• February 7, 2012 – A NOAA study of Colorado gas fields measured methane emissions of about four percent, a significant percentage that could be very damaging to the climate.666

• December 29, 2011 – As reported by the New York Times, levels of methane in the atmosphere have been steadily rising since 2007—coinciding with the onset of the fracking boom and posing a serious threat to the Earth’s climate.667

October 2011 – A study from the National Center for Atmospheric Research concluded that substituting the use of natural gas for coal will increase, rather than decrease, the rate of global warming for many decades.668

July 6, 2011 – According to the U.S. Energy Information Administration and other research, significant amounts of methane are leaking from aging gas pipelines and infrastructure.669

April 2011 – A comprehensive analysis of the greenhouse gas footprint of natural gas from shale formations found that between 3.6 percent to 7.9 percent of the methane from natural gas production wells escapes into the atmosphere, rather than being combusted, thereby undermining any climate benefits of gas over coal as a source of energy.670, 671

Threats from fracking infrastructure

The infrastructure for drilling and fracking is complex and widespread. Beginning where silica sand is mined and processed and ending where gas is burned or liquefied for export, infrastructure includes pipelines, compressor stations, dehydrators, processing plants, rail tankers, flare stacks, and storage depots through which oil or gas is moved, filtered, pressurized, warehoused, and vented. It also includes injection wells and recycling facilities that dispose and treat the prodigious amounts of liquid waste that fracking generates. Air pollution is produced at every stage of the process.

Compressor stations and pipelines are major sources of air pollutants, including benzene and formaldehyde, that raise potential health risks for those living nearby while offering no offsetting economic benefits—indeed, they are associated with loss of tax revenue and economic development for the communities where they are sited and traverse. The Medical Society of the State of New York and the American Medical Association have each called for comprehensive health impact assessments regarding the health and safety risks associated with natural gas pipelines, which include fires, explosions, and leaks.

In the Upper Midwest, the boom in silica sand mining threatens both air and water quality, has transformed rural areas into industrial zones, and introduced complex public health risks that are not well understood. Wisconsin alone provides more than half the sand used in fracking operations in the United States. Silica dust is a known cause of both lung cancer and

silicosis. Exposures to downwind communities—and attendant public health risks from living near frack sand mining and processing facilities—are unknown.

Gas storage facilities include not only manmade holding tanks but also geological formations, most notably, abandoned salt caverns and depleted oil fields left over from mining and drilling operations. These unlined cavities were not created with the intent to store pressurized hydrocarbon gases nor are they engineered for this purpose. The Aliso Canyon gas storage facility, located in a depleted oil field in southern California, released more than 100,000 metric tons of methane into the air of the San Fernando Valley over a four-month period beginning on October 23, 2015 before it was finally contained in February 2016. This massive methane leak—the largest in U.S. history—is the greenhouse gas equivalent of a half million cars driving for a year. The plume itself was visible from space. More than 8,000 families in the nearby community of Porter Ranch were evacuated, thousands were sickened, and two public schools closed. The immediate cause of the Aliso Canyon blowout was a cracked well casing and lack of a shut-off valve. There are currently no federal standards in place for underground gas storage, although, in wake of the Aliso Canyon leak, regulations have been federally mandated.

Sand mining and processing

- July 5, 2016 – The Wisconsin Department of Natural Resources (DNR) released a Strategic Analysis for Public Review of the state’s industrial sand mining industry that downplayed environmental health effects from air pollution. There are 128 industrial sand mine facilities in Wisconsin, including the mines themselves and processing and rail loading facilities. The DNR identified airborne particulate matter as a primary concern for industrial sand mining facilities and said that air quality monitors in western Wisconsin have not detected a problem. Researchers, organizations, and the native community involved in monitoring impacts of the frack sand industry challenged these findings, pointing to lack of data collection on the most dangerous kind of particulate matter called PM2.5, which represents fine particles that are less than 2.5 microns in width. These critics noted that the U.S. Environmental Protection Agency (EPA) had previously expressed concerns about the DNR’s approach to regulating PM2.5. Regarding groundwater, the report described elevated levels of several metals in wastewater holding ponds at the sand mines, presenting a risk to groundwater quality.

- March 25, 2016 – The Occupational Safety and Health Administration (OSHA) amended its existing standards for occupational exposure to respirable crystalline silica, “having determined that employees exposed to respirable crystalline silica at the previous permissible exposure limits face a significant risk of material impairment to their

Key provisions include the reduction of the permissible exposure limit to 50 micrograms per cubic meter of air, averaged over an 8-hour shift. The standards cover many industries with some having two years to comply; the hydraulic fracturing industry is allowed an additional five-year extension for engineering controls, until June 23, 2021. The New York Times reported that safety experts have advocated for a tightening of silica exposure standards for the past forty years but that “progress was stymied for decades by resistance from affected companies and regulatory inaction.” The article reported that many oil and gas companies in particular were not meeting the current silica exposure standard. The new rules, when fully in effect, are estimated to save 600 lives and prevent 900 new cases of silicosis per year.

- March 1, 2016 – University of Wisconsin anthropologist Thomas Pearson conducted in-depth interviews examining the impact of frack sand mining on sense of community, quality of life, and place in nearby residents. His findings indicated that the sudden influx of this heavy extractive industry has eroded residents’ sense of place and belonging and that these experiences are rarely taken into account by policymakers. Residents report “significant anxiety and stress from truck traffic, noise, light pollution, and uncertainty about environmental health impacts,” and distress caused by drastic changes to long-familiar landscapes over which they have no control. Pearson concluded that policymakers should pay closer attention to the uneven distribution of benefits and costs and “recognize that the costs go beyond quantifiable economic or environmental impacts.”

- January 29, 2016 – The Institute for Wisconsin’s Health, Inc. released its Health Impact Assessment (HIA) on frack sand mining operations in western Wisconsin, prepared with the participation of 15 local and tribal health departments. According to the report, the HIA was a collaborative effort. The scope of the report was limited to the potential for community-level health effects of industrial sand mining in western Wisconsin. Regarding air quality, the report concluded that health effects from the impact of industrial sand mining on community-level air quality related to particulate matter are unlikely, and that it was also unlikely that community members would be exposed to respirable crystalline silica from industrial sand mining as currently regulated. Regarding water quality, the report concluded that contamination is possible; however, health effects were unlikely. Quality of life effects were likely, but variable. Though it was a “Level

Partner” for the report, the Ho-Chunk Nation responded to the HIA with criticism, writing, “we are disappointed with the conclusions drawn in the report, particularly in the section on air quality impacts, and we believe a more robust assessment of the air quality impacts is required before such conclusions can be drawn.” They wrote that the HIA failed to provide an accurate and complete analysis of the health threats posed by this industry because of the limited scope, and “minimal discussion about fine particulate matter (or PM2.5), which likely presents the biggest threat from industrial sand mining operations.” As reported by Rochester, Minnesota’s Post-Bulletin, Crispin Pierce, director of University of Wisconsin-Eau Claire's environmental public health program, “believes the study ignored important air quality data collected by university students at sand mining sites at Bloomer, New Auburn and Augusta during the past 18 months,” which he described as “the only work that looked at these fine particles.”

- November 6, 2015 – According to findings from a pilot study led by Crispin Pierce (see entry above), levels of fine particulate matter (PM2.5) are not being adequately measured near frac sand operations. Air monitors set up by Pierce and his team consistently showed higher readings than detections measured by Wisconsin’s Department of Natural Resources. In some instances, PM2.5 levels exceeded the EPA guideline of 12 micrograms per cubic meter of air. In an accompanying news story, Pierce noted that the state’s air quality data largely comes from industry itself. “‘The DNR so far has continued to shy away from doing their own monitoring,’ he said. ‘The monitoring I’ve seen so far is inadequate. People aren’t looking at PM2.5, and they really should be—from unbiased sources.’

- October 15, 2015 – InsideClimate News reported on the response of nearby communities to the “bust” cycle of the frac sand industry in Wisconsin and Minnesota. Reactions reported included ongoing concerns that the industry does not provide permanent economic prosperity. Municipalities and community organizations are using the lull to advance protections in advance of a possible upturn: “Towns in the region are also trying to strengthening their local zoning ordinances, such as adding rules to limit industrial noise and light pollution. In other cases, communities are trying to oust pro-sand advocates from office.”

June 30, 2015 – Because the amount of sand used per fracking well has increased, demand for silica sand by the oil and gas industry is still growing even though new drilling activity has taken a downturn. A global investment bank reported that fracking operations now require an average of 4.2 million pounds of sand per well. A few years ago, silica sand comprised 9.5 percent of fracturing fluid but now is closer to 20 percent. Further “rising intensity” of sand use is expected.684

June 15, 2015 – An investigative report by EnergyWire documented self-reported health impacts among residents of southwestern Wisconsin who live near silica sand mining operations that service the fracking industry. Exposure to silica dust is a proven cause of silicosis and lung cancer. [See further entries on silica sand exposure among workers in the section, “Occupational Health and Safety Hazards.”] Residents near frac sand mine operations reported exposure to dust pollution and respiratory problems. Air monitoring data from the Wisconsin Department of Natural Resources (DNR) showed that none of the state’s 63 active sand mines were in violation for particulate matter, but, as the author noted, the state measured particles only 10 micrometers in diameter or larger.685 Below this diameter, crystalline silica particles are small enough to bypass the body’s natural clearance mechanisms and are likely to lodge deep in the lungs where they can initiate scarring, autoimmune reactions, and tumor formation.686

Wastewater treatment facilities

March 31, 2015 – University of Wyoming researchers identified a wastewater treatment and recycling facility as an important contributor to high winter ozone levels in Wyoming’s Green River Basin. The facility released a signature mixture of volatile hydrocarbons, including toluene and xylene, which are ozone precursors.687 This study documented that recycling activities can transfer volatile pollutants from water into air when fracking wastewater is cleaned up for reuse and that water treatment emissions can serve as an important point source of air pollutants.688

Pipelines and compressor stations

158
ultimately issuing an emergency safety order in February 2016. Newly released federal documents showed that Texas-based Kinder Morgan and Alberta-based Enbridge were both looking into the use of defective parts purchased from Thailand-based Canadoil Asia that recently went bankrupt. U.S. regulators warned of these deficiencies eight years prior. At least one Canadian pipeline with defective materials exploded during that period.

- June 10, 2016 – EPA Region 2 submitted comments to the Federal Energy Regulatory Commission (FERC) on Docket Nos. PFI6-3, Eastern System Upgrade Project, which includes new natural gas compressor stations in Hancock and Highland, New York. The EPA submission suggested an analysis of whether this project was needed; clarification of what is meant by a loop system; evaluation of alternatives; a comprehensive analysis of cumulative, indirect, and secondary impacts; information on greenhouse gas emissions and climate change impacts; a Health Impact Assessment; the inclusion of all pollution prevention practices; and a consideration of environmental justice concerns. The company agreed to provide funding toward a health study but wished to retain the ability to determine the study parameters. Skeptical of the health study’s funding and parameters, residents and potentially impacted towns objected to the company’s dismissal of the towns’ laws prohibiting the construction and operation of heavy industrial use facilities. The Deputy Supervisor of one of the affected towns “said he was encouraged by the federal Environmental Protection Agency’s comments on the project’s preliminary federal application. He said the EPA concerns were ‘the same as ours.’”

- April 27, 2016 – In its report on two natural gas pipeline expansion projects in Appalachia, the Institute for Energy Economics and Financial Analysis demonstrated that the Atlantic Coast and Mountain Valley pipelines are “emblematic of the risks that such expansion creates for ratepayers, investors and landowners.” The report concluded that pipelines out of the Marcellus and Utica region are being overbuilt, putting ratepayers at risk of paying for excess capacity, landowners at risk of losing their property to unnecessary projects, and investors at risk of loss. The report stated that FERC facilitates this building of excess pipeline capacity and its approach for assessing need is insufficient.

- April 22, 2016 – The federal Agency for Toxic Substances and Disease Registry (ATSDR) released a report on air quality near a natural gas compressor station in

Brooklyn Township, Susquehanna County, Pennsylvania, finding levels of fine particulate matter (PM2.5) at levels that can damage human health in those with long-term exposure. Evaluating data from an 18-day EPA field air monitoring event, the report found that the average ambient 24-hour PM2.5 concentration observed at one residence (19 µg/m³) was higher than the nearest regional National Ambient Air Quality Standards (NAAQS) monitoring station (12.3 µg/m³) in Scranton, PA, over the same period. ATSDR concluded that there was evidence that long-term exposure to PM2.5 at the levels found can cause an increase in mortality, respiratory problems, hospitalizations, pre-term births, and low birth weight. The agency said that in the short term, exposure could be harmful to sensitive populations, such as those with respiratory problems or heart disease. The agency recommended that sensitive individuals monitor air quality and limit activity accordingly, and that the Pennsylvania Department of Environmental Protection work to reduce other sources of PM and its precursors.694

- April 3, 2016 – The Southwest Pennsylvania Environmental Health Project issued a Technical Report in response to the January 29, 2016 federal ATSDR report on the Brigich compressor station in Chartiers Township, Washington County, Pennsylvania. ATSDR detected chemicals that had been reported at gas sites previously, and this confirmation of their presence provided “an important acknowledgement that neighbors of such facilities are being exposed (often at very close range) to chemicals that bring with them the possibility of short- and long-term health effects.” The report stated that, in conjunction with the monitoring work of the EPA, ATSDR “provided a solid set of data.” However, due to the limitations of the methodologies available to them, the authors were “concerned that there was, in the end, an underestimate of risk to community members.”695

- April 1, 2016 – Kinder Morgan, the largest energy infrastructure company in North America, suspended construction of a $1 billion pipeline project that would have carried gasoline and diesel fuel across the southeastern United States. Construction was suspended after landowners protested the seizure of their property, a Georgia Superior Court judge upheld a decision denying a certificate that would have allowed the company to use eminent domain, and the state legislature passed legislation to block the property seizure.696

- March 26, 2016 – According to a Boston University-led study, fugitive emissions from urban natural gas pipeline systems were the largest anthropogenic source of the greenhouse gas methane in the United States and contribute to the risk of explosions in

urban environments, with 15 percent of leaks qualifying as potentially explosive.697 “All leaks must be addressed, as even small leaks cannot be disregarded as ‘safely leaking,’” concluded the report authors. In an interview with *InsideClimate News*, the lead author said that in addition to weighing the safety risks from gas leaks, regulators and utility companies must also consider the climate impact of leaks when determining priorities for repairing and replacing pipes.698

- March 7, 2016 – A lawsuit filed against the Federal Energy Regulatory Commission (FERC) in U.S. District Court in Washington, D.C challenged the agency’s relationship with industry, reported *Penn Live*: “The suit accuses the commission of regulatory capture, a situation in which corporations control regulators.” FERC receives all of its funding from the energy companies that it regulates and had never rejected a pipeline plan, which, according to the complainant, demonstrates “clear bias and corruption.”699

- February 26, 2016 – Congressman Chris Gibson (NY-19), in response to citizen concerns, sent a letter to FERC regarding the proposed 41,000-horsepower compressor station in southern Rensselaer County, New York, part of the Northeast Energy Direct (NED) pipeline project. He discussed the inadequacy of federal exposure standards with regard to exposures at compressor sites and lack of medical expertise in these decisions. He requested public health expertise on all Environmental Assessment and Environmental Impact Statement teams, an independent panel to review the federal exposure standards around compressor stations, and “a transparent and effective review process.”700 His call was supported by other elected officials, as well as public health researcher David O. Carpenter, MD, who has studied compressor station pollutants.701

- January 29, 2016 – ATSDR, in collaboration with the EPA Region 3 Air Protection Division, conducted an exposure investigation to evaluate exposures of residents living near the Brigich natural gas compressor station in Chartiers Township, Washington County, Pennsylvania. ATSDR concluded that, although exposure to the levels of chemicals detected in the ambient air was not expected to harm the health of the general population, “some sensitive subpopulations (e.g., asthmatics, elderly) may experience harmful effects from exposures to hydrogen sulfide and PM 2.5 [and] [s]ome individuals may also be sensitive to aldehyde exposures, including glutaraldehyde.” According to ATSDR, one of the study’s limitations was that the sampling “may not have adequately

captured uncommon but significant incidents when peak emissions (e.g. unscheduled facility incidents, blowdowns or flaring events) coincide with unfavorable meteorological conditions (e.g. air inversion)” ATSDR recommendations included reducing exposures to the chemicals of concern to protect sensitive populations, continued collection of emissions data for long-term and peak exposures, and air modeling to better understand ambient air quality. 702

• December 8, 2015 – The Niagara County Legislature, following the recommendations of the Medical Society of the State of New York, called for a Health Impact Assessment (HIA) on natural gas infrastructure, including compressor stations, and co-hosted a conference in Albany on the Medical Society’s health findings. A compressor station with twin compressors, part of the “2016 Northern Access Plan” to transfer gas from Pennsylvania to Canada, is proposed for the county. 703

• November 9, 2015 – Following the 2010 heavy oil spill in Michigan’s Kalamazoo River, Congress ordered an audit that spotlighted the industry’s poor record of spotting leaks. Politico reported on the 2015 regulatory structure ultimately unveiled in response, determining the proposal “fails to patch that hole in the nation’s pipeline safety net.” “While the agency’s proposed rule expands the number of pipelines that must have a leak-detection system in place, it sets no basic standards for how well that technology should work. Instead, safety advocates say, it lets pipeline operators decide for themselves whether they are adequately prepared.” 704

• October 16, 2015 – The U.S. Environmental Protection Agency urged FERC to consider “whether the Northeast Energy Direct pipeline could be combined with other projects, rather than constructing a new system that would have a host of environmental impacts,” reported Oneonta, New York’s Daily Star. The EPA also advised “that the gas demand addressed by NED’s application could be met by renewable forms of energy such as solar and wind power…” 705 (Note: Kinder Morgan withdrew its NED pipeline application in April 2016.)

• September 17, 2015 – At a shale gas conference, industry representatives espoused the construction of new pipelines as necessary to re-invigorate the gas industry in the

Marcellus. Speakers noted that FERC approval can be expected to now take longer, by about six months, blaming environmental groups for the delays.706

- September 9, 2015 – New pipelines are failing at a rate on par with gas transmission lines installed before the 1940s, according to an analysis of federal data by the Pipeline Safety Trust, reported by \textit{S&P Global Market Intelligence}. “The gas transmission lines installed in the 2010s had an annual average incident rate of 6.64 per 10,000 miles over the time frame considered, even exceeding that of the pre-1940s pipes. Those installed prior to 1940 or at unknown dates had an incident rate of 6.08 per 10,000 miles.” The director of the National Transportation Safety Board's Office of Railroad, Pipeline and Hazardous Materials Investigations “agreed that the rapid construction of pipelines in the U.S. is likely a contributing factor.”707

- August 18, 2015 – Houston Advanced Research Center (HARC) scientists addressed “the commonly acknowledged sources of uncertainty which are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events.” They concluded that “more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment.” “Real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web” have been demonstrated, they wrote, by past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions.708 Founded as a technology incubator in 1982 by Houston oilman George P. Mitchell, HARC later re-aligned to focus on sustainable development.

- August 14, 2015 – HARC scientists found that port operations involving petrochemicals may significantly increase emissions of air toxics, including peaks of carcinogenic benzene of up to 37 ppb. The scientists matched the benzene spikes with pipeline systems. The spikes were at levels much higher than those reported in the EPA’s 2011 National Emissions Inventory. The authors recommended the use of updated methods for ambient monitoring.709 Lead scientist Jay Olaguer said in a related interview that “government regulators should wake up to the reality of the situation, that their methods

of tracking air pollution need to be updated so that the samples are taken in real time and can catch it when toxic vapors of this magnitude are released.”

- July 15, 2015 – Rensselaer County lawmakers passed a resolution asking the state of New York to freeze the approval process for the Northeast Energy Direct pipeline—which would carry fracked gas from Pennsylvania to Boston—until it conducts a comprehensive health impact assessment for natural gas pipelines.

- July 8, 2015 – Researchers from West Virginia University completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities, with a “leak” defined as an unintended release of natural gas due to malfunction of a component, and a “loss” defined as an intended release of natural gas. In terms of frequency, most emissions were leaks, but on a mass basis, losses were the dominant source of methane emissions (88 percent). The top loss emitters were engine exhausts (accounting for nearly half), packing vents, and slop tanks. Emissions from compressor blowdowns were not included. A related study by a University of Houston team found that emission rates from compressor stations in Texas’s Barnett Shale were far higher than from well pads.

- July 7, 2015 – Seeking a method to bridge the gap between bottom-up and top-down methods of measuring methane emissions, Purdue University, University of Houston, the National Oceanic and Atmospheric Administration (NOAA), Environmental Defense Fund, and independent researchers surveyed eight high-emitting point sources in the Barnett Shale using an aircraft-based “mass balance” approach. Results from four gas processing plants and one compressor station highlighted the importance of addressing methane “super-emitters” and confirmed that self-reports from the Greenhouse Gas Reporting Program underestimated actual emission rates by a factor of 3.8 or higher, due to “underestimated facility emissions, temporal variability of emissions, and the exclusion of nonreporting facility emissions.”

- July 7, 2015 – Using relatively easy-to-acquire and inexpensive stable isotopic and

alkane ratio tracers, researchers are now able to distinguish methane arising from natural gas production and transport from agricultural and urban methane sources, and, in addition, to distinguish between methane released from shale gas as opposed to conventional wells. Initial research from the University of Cincinnati, University of California at Irvine, and the Environmental Defense Fund found that methane in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas, represents a complex mixture of these sources. This new approach, used for ground-level measurements, can complement and extend top-down approaches, allowing for more accurate inventories of thermogenic and biogenic sources of methane emissions.\footnote{Townsend-Small, A., Marrero, J. E., Lyon, D. R., Simpson, I. J., Meinardi, S., & Blake, D.R. (2015). Integrating source apportionment tracers into a bottom-up inventory of methane emissions in the Barnett Shale hydraulic fracturing region. \textit{Environmental Science & Technology}, 49, 8175–8182. doi: 10.1021/acs.est.5b00057}

- June 12, 2015 – The Agency for Toxic Substances and Disease Registry investigated the health effects of ruptured gas pipelines in an analysis of data in a database on acute petroleum-related releases to which seven states contribute (Louisiana, New York, North Carolina, Oregon, Tennessee, Utah, and Wisconsin). From 2010-2012, there were 1,369 such incidents, which resulted in 259 injuries. More than three-quarters of these incidents were related to natural gas distribution. Equipment failure accounted for half of all incidents; human error accounted for 40 percent. The report noted the “continuing occurrence” of petroleum release incidents—including from natural gas pipeline ruptures—which have “the potential to cause mass casualties and environmental contamination.”\footnote{Anderson, A. R. (2015, June 12). Health effects of cut gas lines and other petroleum product release incidents—seven states. \textit{Morbidity and Mortality Weekly Report}, 64, 601-605.}

- May 2, 2015 – The Medical Society of the State of New York adopted a resolution, “Protecting Public Health from Natural Gas Infrastructure,” that recognizes the potential impact to human health and the environment of natural gas pipelines and calls for a
governmental assessment of these risks.720

- March 3, 2015 – Researchers with the Southwest Pennsylvania Environmental Health Project measured ambient levels of particulate and volatile air pollutants from fracking-related operations and calculated expected human exposures in Washington County, Pennsylvania. Extremely high exposures peaked at night when air was still. These fluctuating exposure events mimic, in frequency and intensity, the episodic nature of health complaints among residents. Over a one-year period, compressor stations were responsible for more extreme exposure events (118) than well pads or gas processing plants.721

- February 24, 2015 – As part of a literature review on the health impacts of compressor stations, the Southwest Pennsylvania Environmental Health Project reported that peak emissions of fine particles tended to occur during construction time, that day-to-day emissions during operational time can fluctuate greatly, and that a compressor blowdown typically represented the single largest emission event during operations. Hence, documentation of these fluctuations cannot be captured by calculating yearly averages. A blowdown is an intentional or accidental release of gas through the blowdown valve that creates a 30- to 60-meter-high gas plume. Blowdowns, which are used to control pressure, can last as long as three hours. The authors noted that blowdowns result in times of high levels of contaminant release and that anecdotal accounts associate blowdowns with burning eyes and throat, skin irritation, and headache.722 There is neither a national or state inventory of compressor station accidents nor a body of peer-reviewed research on the public health impacts of compressor stations.

- February 17, 2015 – A Boston study found that emissions from residential, end-use natural gas infrastructure was a significant source of atmospheric methane—two to three times larger than previously presumed—and accounted for 60 to 100 percent of methane, depending on the season. Of all the natural gas in the downstream component of the natural gas system, 2.7 percent was lost to the atmosphere.723

- February 10, 2015 – A team of engineers from Pennsylvania and Colorado examined methane emissions from natural gas compressor stations and found that vents, valves, engine exhaust, and equipment leaks were also major emissions sources. There was considerable variation in emissions among the 45 compressor stations measured.

\begin{thebibliography}{99}
\end{thebibliography}
Surprisingly, substantial emissions were found even when compressors were not operating.724

- December 27, 2014 – A *Pittsburgh Tribune-Review* investigation found that the vast majority of natural gas “gathering lines”—pipelines that take natural gas from rural well pads to processing plants—were regulated by neither federal nor state pipeline safety laws. The United States has nearly 230,000 miles of natural gas gathering lines that are unregulated, operating without safety standards or inspection. These pipelines are among the largest and highest-pressure pipes in use and carry gas at nearly three times the pressure of transmission lines, which transport the gas from the processing plants to urban distribution networks.725

- November 11, 2014 – An analysis by a Carnegie Mellon University research team of 40,000 pipeline accidents from 1968 to 2009 found that comparatively few accidents accounted for a large share of total property damage, whereas a large share of fatalities and injuries were caused by numerous, small-scale accidents. There are 2.4 million miles of natural gas pipeline in the United States and 175,000 miles of hazardous liquid pipeline (which includes crude oil).726

- October 30, 2014 – A research team led by David O. Carpenter at University at Albany found high levels of formaldehyde near 14 compressor stations in three states. In Arkansas, Pennsylvania, and Wyoming, formaldehyde levels near compressor stations exceeded health-based risk levels. The authors noted that compressor stations can produce formaldehyde through at least two routes: it is created as an incomplete combustion byproduct from the gas-fired engines used in compressor stations. It is also created when fugitive methane, which escapes from compressor stations, is in the presence of sunlight. Formaldehyde is a known human carcinogen. Other hazardous air pollutants detected near compressor stations in this study were benzene and hexane. One air sample collected near a compressor station in Arkansas contained 17 different volatile compounds. (See entry for October 30, 2014 in Air Pollution.)

- October 15, 2014 – In comments to the Federal Energy Regulatory Commission, New York’s Madison County Health Department reviewed the literature on compressor station emissions and expressed concerns about associated health impacts, including documented correlations between health problems and residential proximity to compressor stations. It also reviewed health outcomes associated with exposures to chemicals known to be released from compressor stations, including volatile organic compounds, carbonyls and

aldehydes, aromatics, and particulate matter. In addition, gas from fracking operations transiting through compressor stations may carry gaseous radon. The Health Department noted a troubling lack of information on the intensity, frequency, and duration of emission peaks that occur during the blowdowns and large venting episodes that are a normal part of compressor operations.\footnote{New York State Madison County Health Department (2014, October 15). Comments to the Federal Energy Regulatory Committee concerning docket no. CP14-497-000, Dominion Transmission, Inc. Retrieved from https://www.madisoncounty.ny.gov/sites/default/files/publicinformation/madison_county_doh_comments-docket_no._cp14-497-000.pdf}

- January 24, 2013 – A report prepared for the Clean Air Council by an independent consulting firm to evaluate air quality impacts from the Barto Compressor Station in Penn Township, Lycoming County, Pennsylvania predicted “large exceedances” of the nitrogen dioxide (NO\textsubscript{2}) 1-hour National Ambient Air Quality Standard (NAAQS). Researchers used allowable emissions in the Pennsylvania Department of Environmental Protection permit, the 2006-2010 meteorological data and the latest US EPA modeling guidance for the model’s prediction. Three techniques were used, and for two of the techniques, NAAQS exceedances occurred within a mile of the plant. The report concluded, “NO\textsubscript{2} impacts from the Barto plant alone are very significant since its emissions cause large exceedances of the 1-hour NAAQS.”\footnote{Tran, K. T. (2013, January 24). AERMOD modeling of NO\textsubscript{2} impacts of the Barto Compressor Station: Final report. Prepared for the Clean Air Council, Philadelphia, PA. Retrieved from http://www.pennfuture.org/UserFiles/File/MineDrill/Marcellus/CAC_EmissionsNO2_CompressorBarto_20130124.pdf}

- July 13, 2011 – A Fort Worth air quality study assessed the impact of drilling and fracking operations, and ancillary infrastructure, on concentrations of toxic air pollutants in the city of Fort Worth, Texas. The study found that compressor stations were a
significant source of fracking-related air pollution. The compressor engines were responsible for over 99 percent of the hazardous air pollutants emitted from compressor stations, of which 67 percent was formaldehyde.732

Gas storage: The Aliso Canyon leak

- July 13, 2016 – As reported by the *Los Angeles Daily News*, Los Angeles County health officials were prepared to go to court to ensure that the Southern California Gas Co. complies with an order to pay for professional comprehensive cleaning in the homes of residents who were relocated due to the Aliso Canyon gas leak. The company had filed legal papers asking that the order “to remove dust and oily mist from up to 35,000 homes be nullified,” after their report of having cleaned 1,700 homes to date. The Los Angeles County Health Department said the company had done a poor job on these and did not follow protocol to remove the metal particles, including barium, manganese, vanadium, aluminum, and iron previously identified in household surface dust.733

- July 9, 2016 – California’s South Coast Air Quality Management District and Southern California Gas Co. were still at an impasse seven months after the company was given an abatement order that included a community health study on the potential impacts of exposures from the massive Aliso Canyon leak. The company was ordered to commit to paying “reasonable costs” for the study.734

- June 22, 2016 – The first federal legislation of gas storage facilities was signed into law. The Protecting our Infrastructure of Pipelines and Enhancing Safety Act of 2016 includes a provision in response to the Aliso Canyon gas leak requiring the Pipeline and Hazardous Materials Safety Administration to develop regulations for the construction and operation of underground natural gas storage facilities.735 (See entry below, of February 8, 2016, for analysis of the likely shortcomings of these first federal regulations and their inability to prevent a leak such as that at Aliso Canyon.)

- June 20, 2016 – As reported in *Geophysical Research Letters*, an airborne instrument onboard a NASA satellite was able to detect and quantify the size and shape of the

methane plume from the Aliso Canyon gas leak as the event occurred. This is the first time a natural gas leak has been visible from space, according to the authors of the study.

- May 4, 2016 – Southern California Gas Co. said that costs related to the Aliso Canyon natural gas storage facility leak reached an estimated $665 million. The utility company let the Securities and Exchange Commission know they carry policies with a combined limit available “in excess of $1 billion,” but according to the Los Angeles Times, legal experts and lawyers said that $1 billion in insurance might not be enough for what they ultimately need.

- April 12, 2016 – California energy agencies issued a report indicating the threat of widespread summer power outages if no gas can be withdrawn from Aliso Canyon. The report was met with criticism. “Consumer groups and utility critics contend that the blackout warnings are an irresponsible scare tactic to ensure that Southern California Gas Co. is allowed to keep storing gas at the facility and that ratepayers will pay for upgrades to store even more fuel there.”

- April 6, 2016 – The Los Angeles Times reported that, though prices for homes in Porter Ranch adjacent to the Aliso Canyon gas storage leak held up, sales declined. After the leak that began October 23, 2015, sales from December 2015 to February 2016 declined 20 percent from the year before. Disclosures for homes in the area “now include a mention of the community’s proximity to the gas field and the recent problems.”

- March 18, 2016 – The California State Oil and Gas Division of the Department of Conservation issued penalties totaling $75,000 for three separate violations after finding incidents of intentional venting of gas at the Aliso Canyon gas field and malicious concealment of those acts. Both are violations of the state gas regulations. Following the Aliso Canyon gas storage leak, the California State Public Utilities Commission ordered a statewide survey of California’s 12 natural gas storage fields and found 229

faulty valves, flanges and leaky wellheads and a 230th leak at an abandoned well; eight were deemed hazardous.742

- March 14, 2016 – Methane and ethane emissions were measured to determine spatial patterns and source attribution of urban methane in the Los Angeles Basin. The surveys demonstrated the prevalence of fugitive methane emissions across the Los Angeles urban landscape and that fossil fuel sources accounted for 58–65% of methane emissions.743

- February 25, 2016 – Measurements of methane and other chemicals were taken by aerial equipment following the October gas release from a faulty well in the Aliso Canyon storage field. The data demonstrated that the blowout of this single well created the largest known anthropogenic point source of methane in the United States. The leak lasted 112 days and released a total of 97,100 tons of methane and 7,300 tons of ethane into the atmosphere. This was equal to 24 percent of the methane and 56 percent of the ethane emitted each year from all other sources in the Los Angeles Basin combined.744

Aliso Canyon was already a major pollution source before the massive leak.745 As determined by the study and reported by major news outlets, the recent methane leak is officially the worst in U.S. history.746, 747

- February 18, 2016 – Stanford and UCLA scientists reported to InsideClimate News that the lack of measurement data for the entire 100+ days of community exposures to the Aliso Canyon methane leak, combined with gaps in the science about many of the chemicals, hinders the ability to understand the health impacts of the leak. “The first week is when we would expect the highest gas concentrations to reach the neighborhood because the pressures in the storage field were the highest,” said Robert Jackson, an earth system science professor at Stanford University who measured methane concentrations in nearby communities during the leak. ‘And yet we don't have any information or data for that first week at least.'” Jackson noted that even after monitoring was initiated, it was intermittent rather than continuous.748

• February 18, 2016 – Independent regional experts from USC and UCLA interviewed by Southern California Public Radio expressed skepticism that an industry-funded study ordered by the South Coast Air Quality Management District following the Aliso Canyon methane leak would be rigorously designed to answer specific questions about sub-chronic, cumulative exposures, including hydrogen sulfide, which was measured in the nearby Porter Ranch community at levels far greater than the average across American cities.

• February 13, 2016 – The Los Angeles County Department of Health prepared a Supplemental Report for its Expanded Air Monitoring Plan (EAMP) concerning the Southern California Gas Company’s Aliso Canyon storage facility long-term gas leak. The report addressed “chemicals of health concern” including toluene, ethylbenzene, xylene, hydrocarbons, volatile organic compounds, metals, and radon and concluded, “all results suggest that chemical exposures experienced by residents as a result of the gas leak are below the levels of concern that have been established by various regulatory agencies.” Remaining challenges named by the report itself included possible gaps in data collection, other chemicals present for which no sampling occurred, and further study of the symptoms reported by the public. Many independent scientists did not concur with the Department of Health’s ongoing statements that chemical exposures were below levels of concern. Issues raised included monitoring not initiated until a week after the leak began, lack of continuous monitoring, and reliance on “grab samples.” Speaking to InsideClimate News, John Bosch, a retired air-monitoring expert with more than 30 years’ experience at the EPA said, “Grab samples may be OK as a first-tier guestimate of what the problem is, but you really have to have continuous monitoring.”

• February 8, 2016 – The Pipeline and Hazardous Materials Safety Administration (PHMSA) announced that it might issue its first federal safety regulations for gas storage sites such as Aliso Canyon, while also suggesting site operators voluntarily follow guidelines that the proposed rules (which would likely take years to issue) will likely mirror. According to a report in Inside Climate News, these guidelines would not require systems to stop the flow of gas in an emergency or mandate redundancies to prevent methane from leaking into the environment.” If PHMSA proceeds to adopt industry guidelines, the resulting rules “may not address two key issues that turned Aliso Canyon into a disaster: emergency shutoff valves and a safer configuration of pipes.” Further, even with new regulations, storage units would most likely remain under state

%20Results%20of%20Monitoring%20and%20Assessments%20of%20Health%20-%2013-16.pdf
jurisdiction, “though state authorities may adopt any new federal rules.”

A subsequent story reported on members of Congress pressing PHMSA to create the first federal standards for the 418 underground gas storage facilities for which it has authority to set regulations. In the hearing before a subcommittee of the House Committee on Transportation and Infrastructure, California representatives “spoke about their efforts to speed up PHMSA’s rulemaking for underground gas storage.”

- **February 5, 2016** – As part of the Expanded Air Monitoring Plan, Los Angeles County Department of Health provided results for the primary chemicals of concern to assess health effects in residents, pets, and other animals in the community during the Southern California Gas Aliso Canyon storage facility leak. Those chemicals included methane, odorants, and benzene. The maximum level of methane detected was 4,340 ppm and the maximum level of benzene was 30.6 ppb. Early on, average weekly benzene levels that were close to the 1 ppb chronic exposure limit/health protective level. “Methane levels have remained above normal, but have decreased substantially over time,” the report summarized. It also stated that odorants “… remained below instrument detection limits throughout the entire period, including immediately after the leak, even at locations near the leaking well,” and that “[b]enzene and other chemicals were originally detectable at levels above normal from within community sampling sites, but peak levels remained below acute exposure thresholds.”

While the Los Angeles County Department of Health concluded that “health effects resulting from the on-going leak should be limited to short-term effects resulting from exposure to the odorants,” independent scientists, noting data gaps, have challenged these conclusions.

- **January 25, 2016** – Some health experts and residents of Porter Ranch, California, adjacent to the Aliso Canyon gas field leak, expressed concern about long-term exposure to the odorous component of the gas, mercaptans, to which regulators attributed several symptoms of residents. Mercaptans are sulfurous chemicals that are added to natural gas to aid in the detection of leaks. Though California regulators have said the health problems, such as headaches, vomiting, and nosebleeds are temporary and will not lead to long-term damage, medical researchers described data gaps to *InsideClimate News*. There is “virtually no research on prolonged exposure to mercaptans.” Further, some researchers suggest the health problems may have been caused by different chemicals in the gas, and that “regulators have downplayed the significance of other contaminants that are also present in the leak.”

January 19, 2016 – Peter Richman, MD, president of the Los Angeles County Medical Association told the Los Angeles Daily News that, at nearly three months after the Aliso Canyon methane leak began, physicians had yet to receive a formal statement from the Los Angeles County Department of Public Health about airborne chemical pollutants related to the gas leak or guidelines on how to answer questions from patients about long-term health effects. Richman expressed special concern about prolonged exposure to methane and trace chemicals known to be carcinogenic. Another area physician reported that, as of the interview date, his urgent care practice had seen a hundred patients whose symptoms were consistent with exposure to leak-related pollutants.

January 14, 2016 – Boston University researcher Nathan Phillips and Bob Ackley of Gas Safety USA drove a high precision GIS-enabled gas analyzer through roads throughout California’s San Fernando Valley adjacent to the Aliso Canyon gas leak in early January 2016. Early results showed methane levels elevated 2 to 67 times the background level.

January 13, 2016 – Investigations into the possible cause of the gas leak in Aliso Canyon included the consideration that nearby fracking may have contributed to casing failure. In an email to the Los Angeles Daily News, California Department of Conservation Chief Deputy Jason Marshall said that their investigation will examine well records, including those pertaining to “well stimulation operations.” According to a 2015 report prepared for the California Council on Science and Technology (CCST), hydraulic fracturing is used about twice yearly to enhance storage “mostly in one facility serving southern California (Aliso Canyon).”

January 13, 2016 – “Aliso Canyon is a wake-up call,” according to a Rocky Mountain PBS News investigative report on the state of U.S. natural gas infrastructure. Natural gas is no longer a cleaner fuel than coal when methane leakage rates exceeds 2-4 percent, but the vast size of the nation’s interconnected natural gas storage and pipeline systems makes difficult the task of tallying all the micro-leaks spread across the entire network and answering fundamental questions about exactly how much methane is being lost. The PBS report also expressed concern about the age of many of the system’s component parts. According to the piece, nearly half (46 percent) of the nation’s transmission

pipelines, designed to carry high-pressure gas over long distances, were built in the 50s and 60s and are now more than a half century old.\(^{760}\)

- December 30, 2015 – According to the *Los Angeles Daily News*, which unearthed November 2014 state regulatory filing documents, the Southern California Gas Company knew about the corrosion and potential for leakage at Aliso Canyon prior to the massive blow-out. “In written testimony to the California Public Utilities Commission, [SoCalGas Director of Storage Operations Phillip] Baker described a reactive maintenance process that hinted at major leakage problems underground.”\(^{761}\)

- November 20, 2015 – California state agencies collaborated with Aviation Scientific to measure methane emission rates at two early November dates, finding rates of 44,000±5,000 kilograms of methane per hour and 50,000±16,000 kilograms of methane per hour. The results indicated that the Aliso Canyon gas leak would have contributed about a quarter of California’s methane emissions for the time period studied.\(^{762}\)

- November 20, 2015 – According to the *Los Angeles Times*, one month into the Aliso Canyon ongoing gas leak, Southern California Gas warned that it “might need several months” to plug the leak. An order from California’s Division of Oil, Gas and Geothermal Resources, “stated that an ‘uncontrolled flow of fluids’ and gas was escaping and the operator had failed to fully inform state officials about the well's status. Steve Bohlen, the state oil and gas supervisor, also directed the company to submit a schedule for remediation work or for drilling a relief well.”\(^{763}\)

- October 19, 2015 – *Houston Public Media* reported on the 125 caverns carved out of salt storing natural gas liquids (NGLs), thousands of feet under the city of Mont Belvieu, Texas, east of Houston. “There have been fiery accidents here. But nothing like what happened 23 years ago at a different [NGL] storage site 100 miles to the west. ‘A bomb-like blast literally blew residents in this small community out of their beds this morning, said a reporter for Dallas’ s Channel 8 as he did a live report just outside the city of Brenham.” That blast, which killed three and injured 21, was reportedly caused by the lack of an emergency shut-off valve. There are no federal standards in place for such requirements. Twenty-three years later, a month prior to the *Houston Public Media* report, “at a hearing held by the U.S. Senate Committee on Commerce, Science, & Transportation, Donald Santa, head of the Interstate Natural Gas Association of America,

told the senators that it was only in recent weeks that the industry approved standards for storing natural gas.” Texas did enact legislation a year after the deadly blast “and now requires emergency shutoff valves and inspections for leaks every five years.”

- October 5, 2011 – The federal district court in Topeka struck down Kansas gas-safety laws in 2010, and 11 underground storage sites with a capacity of more than 270 billion cubic feet of gas have gone uninspected, leaving thousands of Kansans to live on and around uninspected gas-storage fields.

- 2008 – When considering the possibility of storing natural gas in a variety of underground gas storage facilities, the UK government commissioned the British Geological Survey to identify the main types of facilities currently in operation worldwide along with any documented or reported failures and incidents which have led to release of stored product. The researchers found that California had the most incidents, but concluded that many of these problems and geological factors would not necessarily be applicable to the UK. The incidents most relevant to gas storage in the UK resulted from a failure of either the man-made infrastructure (well casings, cement, pipes, valves, flanges, compressors etc.), or human error, which has included overfilling of caverns and inadvertent intrusion. Extreme natural events, including earthquakes, also played a role. The researchers looked closely at incidents in salt caverns that had been repurposed to store gas. They reported that “early salt cavern storage in the US was done in brine wells that had been solution mined [in which salt deposits are melted away with hot water or steam] without consideration for subsequent storage in the depleted caverns. This practice sometimes resulted in later problems for storage operations in retrofitted brine caverns.” The authors conclude that the rate for a geological failure of the storage cavity in an underground gas storage facility is of the order of 10^{-5} failures per well year.

Inaccurate jobs claims, increased crime rates, threats to property value and mortgages, and local government burden

Experiences in various states and accompanying studies have shown that the oil and gas industry’s promises of job creation from drilling for natural gas have been greatly exaggerated. Many of the jobs are short-lived, and many have gone to out-of-area workers. With the arrival of drilling and fracking operations, communities have experienced steep increases in rates of crime, including sex trafficking, sexual assault, drunk driving, drug abuse, and violent victimization, all of which carry public health consequences, especially for

women. Social costs include strain on law enforcement, municipal services, and road damage. Economic analyses have found that drilling and fracking diminish property values, tax revenues for local governments, and tourism. Increased rates of industrial accidents and traffic accidents strain emergency services and create further burdens on local government services and budgets. Drilling and fracking pose an inherent conflict with mortgages and property insurance due to the hazardous materials used and the associated risks. The departure of drilling and fracking operations from communities eases some of these challenges but can also lead to additional economic harm and is often accompanied by a sharp uptick in foreclosures, late car and mortgage payments, and empty housing units.

- May 24, 2016 – In 327 U.S. counties previously at the center of the fracking boom, overdue car loans approached their highest level in five years, and late mortgage payments also rose, according to a report by the Financial Times that examined data from the Federal Reserve Bank of New York. These trends stood in stark contrast to lowered overdue debt rates in the rest of the U.S. This surge in late car payments in intensely fracked areas of the United States has “exposed the damage done by the collapse in drilling activity and marred broadly positive trends for late debt payments by American consumers.”

- May 8, 2016 – With the downturn in the fracking industry, Wisconsin’s sand mining sector, which provides silica sand for fracking operations, has also slumped and prompted significant layoffs and job losses in both 2015 and 2016, according to a report by Eau Claire’s Leader-Telegram. “This is what the bust part of the boom-and-bust cycle of the energy sector looks like, and it’s something west-central Wisconsin residents, who are mostly new to the industry, aren’t used to seeing.” Other companies that supply goods and services to sand mining operations in the region have also experienced a downturn.

- March 8, 2016 – A DeWitt County, Texas judge estimated it will cost his county $432 million to rebuild its roads, noting that if a road “leads to a rig site, it's bound to be a broken road.” The judge stated that ultimately the companies would pay a large share.

- February 22, 2016 – Inside Energy investigated oil-industry related wage theft claims in the West, finding “a growing number of oil workers are turning to the courts, saying they weren’t paid fairly even when times were good.” Between 2010 and 2015, wage theft suits against oil and gas companies in Colorado increased by a factor of nine, and in Texas nearly ten times. The investigation found that oil and gas companies were consistently among the top violators of wage laws—especially in failure to pay overtime. A federal investigation of the industry led to the recovery of $40 million dollars in unpaid wages. One of the officers involved in the investigations is quoted saying, “We have found cases where workers were not even paid the minimum wage, because they’re

177
working so many hours …. So the idea that they’re being highly compensated, in some cases, they’re not.”

- January 13, 2016 – A fire on a fracking site in Grady County, Oklahoma that consumed 22 oil tankers required the response of six regional fire departments.

- December 15, 2015 – The value of homes that rely on well water in Pennsylvania dropped an average of $30,167 when fracking took place within 1.5 kilometers, according to a study by Duke University researchers published in the American Economic Review. For these groundwater-dependent homes, a fracking well located within one kilometer was linked to a 13.9 percent average decrease in values; homes with wells at least two kilometers away maintained their value. The study was based on home sales between 1995 and 2012 in 36 counties. Researchers stated that their figures may not fully reflect the total costs associated with groundwater contamination risk, as, for example, when homeowners purchase expensive home water filtration systems. Though their study does not incorporate data on actual contamination, concerns about contamination can significantly affect property values. Researchers found “strong evidence of localized costs borne particularly by groundwater-dependent homes.”

- December 8, 2015 – Even as housing prices in shale gas-areas of Pennsylvania have dropped along with fracking activity, many seniors and people living on low incomes are still being priced out of the market, StateImpact reported. Pennsylvania still lacks a quarter million affordable rental homes for people in poverty despite a 2012 law requiring gas companies to pay well fees intended to offset the costs of affordable housing programs in communities where drilling is occurring.

- December 2, 2015 – “The local economy is feeling the pinch” of the downturn of activity in Pennsylvania’s gas fields, according to a Reuters report. The late 2015 slump marked a turning point in Marcellus Shale fracking. Regional economic effects reported include empty hotel rooms and foreclosure notices in Lycoming County at their highest since data were first collected.

- October 7, 2015 – Vehicular collisions and Texas fracking activity are closely linked, according to a report by the Texas A&M University Transportation Institute. Researchers

analyzed the number of crashes and injuries across Texas during the period from 2006 to 2009, when drilling and fracking operations were intensive over the Barnett Shale, as well as from 2010 to 2013, when activity increased in the Permian Basin in West Texas and the Eagle Ford Shale in South Texas, and decreased in the Barnett. Collisions increased where shale gas activity increased and decreased where it slowed down.

Quoted in the Texas Tribune, report co-author Cesar Quiroga said, “The two trends correlated so well, and they were perfectly aligned … We could use this as a predictive model.” Further, the increase was greater in South Texas, the region that relies most heavily on horizontal, hydraulic fracking requiring millions of gallons of water and sand to be trucked in, compared to West Texas which does use fracking but also more simple, vertical wells. The comprehensive cost of these collisions was estimated to be about $2 billion more from 2010 to 2013—in both the Eagle Ford and Permian Basin—compared to the previous period.

- September 30, 2015 – The North Dakota Bureau of Criminal Investigation was set to hire nine new agents, reported the Billings Gazette, “…allowing for more attention to cases of human trafficking and organized crime in western North Dakota … as increased oil production resulted in growing populations.”

- September 29, 2015 – “New residential units sit empty as gas production falls,” HousingWire Magazine wrote, following up on their earlier reporting describing the link between the drilling boom and the real estate boom in the Bakken shale region of North Dakota. Economic data indicate that Bakken drilling is not lasting long enough to sustain the building explosion.

- September 9, 2015 – Most local governments in Western North Dakota and Eastern Montana’s Bakken region have experienced net negative fiscal effects, according to a Duke University analysis published by the National Bureau of Economic Research. These trends were also seen in municipalities in rural Colorado and Wyoming, which also struggled to manage fiscal impacts during recent oil and gas booms, but in these two states the fiscal impact eased as drilling activity slowed. Referencing the report, McClatchyDC wrote, “North Dakota cities and counties have been slammed.”

challenges have included providing water and sewer infrastructure, substantial damage to roads, soaring housing prices, and strained emergency services.

- August 27, 2015 – Fracking in or near public parks could cause tourists to stay away and lead to a decline in park use, according to a report published by a team of tourism, recreation, and sport management researchers from the University of Florida, North Carolina State University, and Florida State University. Using data collected from 225 self-identified park users from Pennsylvania, Ohio, West Virginia, Kentucky, and Tennessee, researchers reported that only one-third of participants were willing to participate in recreational activities near fracking operations, compared to 38 percent unwilling, and 29 percent neutral. Forty-six percent of respondents supported a ban on fracking on public lands, while 20 percent agreed with promoting fracking on public lands.

- July 1, 2015 – Britain’s Department for Environment, Food & Rural Affairs released previously redacted sections of a report on the impacts of drilling and fracking. The report found that housing prices near fracking wells would likely fall up to seven percent for houses within a mile of wells. Furthermore, properties within one to five miles of fracking sites could incur additional insurance costs. The report warned of environmental damages, including from leakage of fracking waste fluids, and found that public health could be affected indirectly through consumption of contaminated wildlife, livestock, or agricultural products. The report also found potential for some benefits, such as job growth.

- July 2015 – A working paper by researchers with the National Bureau of Economic Research found that fracking resulted in an increase in male teen high school dropout rates. “Our estimates imply that, absent fracking, the male-female gap in high school dropout rates among 17-18-year olds would have narrowed by about 11 percent between 2000 and 2013 instead of remaining unchanged.” The authors explained that by increasing the demand for low-skilled labor, fracking could slow growth in educational attainment. They noted that the relative wage boost from fracking may be only temporary. Indeed, by the end of the sample period, the benefits had started to wane as the labor demand from fracking appeared to no longer favor dropouts. Thus, the fracking boom may be inhibiting educational achievement among young men who “would already be near the bottom of the skill distribution, with possible implications for future productivity and the social safety net.”

March 20, 2015 – The U.S. Attorney for Western New York linked a rise in production of methamphetamine to use among workers in the fracking fields of northern and western Pennsylvania. Surging demand for the drug, which allows users to stay awake for 48 to 72 hours, may be related to the extremely long working hours that employees in the gas industry must endure.785

January 4, 2015 – A documentary by Forum News Service, “Trafficked Report,” revealed that sex trafficking, including of children, in the Bakken oil fields of North Dakota was a significant problem.786 The dynamics of the oil boom, with an influx of out-of-state and primarily male workers far from their families, created an increase in demand for prostitution.787

December 28, 2014 – The New York Times profiled the impacts of oil drilling and fracking on the Fort Berthold Indian Reservation in North Dakota, finding corruption, crime, and negative environmental impacts. Aside from a significant rise in jobs, which often go to transient workers, many residents “see deterioration rather than improvement in their standard of living. They endure intense truck traffic, degraded roads, increased crime, strained services and the pollution from spills, flares and illegal dumping.” According to the Times’ calculation, the reservation had seen 850 oil-related environmental incidents from 2007 through mid-October 2014, which generally went unpunished.788

December 26, 2014 – Examining Pennsylvania Department of Transportation data, Ohio’s Star Beacon newspaper found that fracking poses a safety threat on rural roads. The paper found that Pennsylvania’s five busiest drilling counties recorded 123 more heavy truck crashes in 2011 than before the gas boom began—a 107 percent increase. The paper noted the burden drilling and fracking placed on local communities and governments, including the strain on local emergency responders.789

December 17, 2014 – Heavy drilling and fracking (defined as 400 or more wells drilled within a county over 5-8 years) was positively correlated with increased crime, sexually

transmitted diseases, and traffic fatalities, according to a report by the Multi-State Shale Research Collaborative.\(^790\) The report looked at the impacts in Pennsylvania, Ohio, and West Virginia, primarily finding statistically significant impacts in six heavily drilled counties in Pennsylvania. In those six counties, violent crime increased 17.7 percent—corresponding to about 130 more violent crimes in those counties in 2012—compared to a decrease in violent crime rates in both urban and rural non-drilling communities. Property crime increased 10.8 percent in those six counties, drug abuse rates rose 48 percent, and drunk-driving offenses rose 65 percent compared to 42 percent in rural areas with no drilling. The report found a statistically significant increase of 24 percent to 27 percent in rates of sexually transmitted diseases across drilling counties in all three states. Motor vehicle fatalities increased 27.8 percent in Pennsylvania’s six high-drilling counties. The report found a modest increase in jobs, but noted that an influx of out-of-state workers at least partially explained the increases in traffic and crime.\(^791\)

- December 15, 2014 – A report written in French by Quebec’s Advisory Office of Environmental Hearings concluded that the environmental costs of fracking in the St. Lawrence Lowlands would outweigh the potential economic benefits. In a press release, the Advisory Office of Environmental Hearings concluded that fracking “would not be advantageous for Quebec because of the magnitude of the potential costs and externalities, compared to royalties that would be collected by Quebec. Other concerns also remain, including plans of social acceptability, legislation, and a lack of knowledge, particularly with respect to water resources.”\(^792\)

- October 30, 2014 – The New York Times profiled the profound impact heavy drilling has had on Glasscock County, Texas, including its farming community. Farmers described increases in trash, traffic accidents, clashes around farmers selling groundwater to drillers, and economic detriment. In many cases, acres of farmland around a drill site “will probably never be suitable for fertile farming again,” and farmers are “at the mercy” of what drillers want to pay for damages. The county itself receives revenue, but most of that additional money “is being used to repair roads damaged by oil field truck activity. Overall, the gains from drilling are not viewed as worth the drawbacks in a county long dominated by cotton farming.”\(^793\)

- September 28, 2014 – A Washington Post investigation reported on heroin and methamphetamine addiction—and associated violent crime—among Native American

communities located within the Bakken Shale oil fields. According to a chief judge for the Mandan, Hidatsa, and Arikara Nation, “The drug problem that the oil boom has brought is destroying our reservation.”

- September 11, 2014 – An editor for the Washington Post examined jobs and manufacturing data in Youngstown, Ohio, to demonstrate that drilling and fracking are not resulting in a revitalization of the Rust Belt as some proponents and a prominent New York Times story asserted. The Post determined that in Youngstown, Ohio, the manufacturing sector has lost jobs by the tens of thousands in the last twenty years and the oil and gas industry has created approximately two thousand jobs since the recession ended. Six years prior, there were 13,000 more jobs in the Youngstown metro area than there were in summer 2014.

- September 9, 2014 – A study by researchers at Colorado State University examined the political economy of harm and crime associated with the oil and gas industry in rural Colorado, particularly around the rise of fracking. The researchers looked at complaints that citizens filed with the state, and also conducted interviews and examined other data. They found 2,444 complaints between November 2001 and June 2013 covering a range of issues including water, environment, noise, air quality, land use, and more. They characterized citizen complaints as “extensive and complex” and concluded that, regardless of the nature of the harm, most were “persistent and omnipresent” rather than short-lived, isolated problems.

- September 6, 2014 – In Williams County, North Dakota, in the Bakken Shale, increases in crime have corresponded with the flow of oil. The infusion of cash has attracted career criminals who deal in drugs, violence, and human sex trafficking. The Williston Herald portrayed, in a “reader’s discretion advised” article, the rapid rise of “index crimes”—“violent crimes that result in the immediate loss of an individual’s property, health or safety, such as murder, larceny and rape.” With fewer than 100 law enforcement personnel, crime in Williams County “has risen in kind with the county’s population, but funding, staffing and support training for law enforcement has not.”

- September 2014 – Reporting on the social, environmental, health and safety, and economic burdens endured by localities from fracking, the magazine Governing: The States and Localities found that “fracking, in many cases, negatively impacts property values, which in turn depresses property tax revenue. For property owners who own the

rights to the oil and gas on their land, the effects of drilling can be offset by royalty payments. But localities have no revenue offset if properties lose value.”

- August 26, 2014 – The U.S. Justice Department Office on Violence Against Women awarded three million dollars to five rural and tribal communities to prosecute crimes of violence against women and provide services to victims of sexual assault, domestic violence, and stalking in the Bakken Region of North Dakota and Montana. Rationale documented by tribal leaders, law enforcement, and the FBI included, “rapid development of trailer parks and modular housing developments often referred to as ‘man camps;’ abrupt increase in cost of living, especially housing; rapid influx of people, including transients, in a previously rural and stable community; constant fear and perception of danger; and a lost way of life. Local and tribal officials and service providers reported that these changes have been accompanied by a rise in crime, including domestic and sexual violence.”

- May 27, 2014 – A Bloomberg News analysis of 61 shale-drilling companies found that the economic picture of shale oil and gas is unstable. Shale debt has almost doubled over the last four years while revenue has gained just 5.6 percent. For the 61 companies in their analysis, Bloomberg News reported: “In a measure of the shale industry’s financial burden, debt hit $163.6 billion in the first quarter.” Further, Bloomberg noted that drillers are caught in a bind because they must keep borrowing to pay for exploration needed to “offset steep production declines typical of shale wells…. For companies that can’t afford to keep drilling, less oil coming out means less money coming in, accelerating the financial tailspin.”

- May 5, 2014 – An Associated Press analysis found that traffic fatalities have spiked in heavily drilled areas of six states, whereas most other roads in the nation have become safer even as population has grown. In North Dakota drilling counties, for instance, traffic fatalities have increased 350 percent.

• April 16, 2014 – A comprehensive article in the *Albany Law Review* concluded that the risks inherent with fracking are not covered by homeowner’s insurance, not fully insured by the oil and gas industry, and threaten mortgages and property value.803

• April 2014 – A report by the Multi-State Shale Research Collaborative, “Assessing the Impacts of Shale Drilling: Four Community Case Studies,” documented economic, community, government, and human services impact of fracking on four rural communities. The study found that fracking led to a rapid influx of out-of-state workers and, although some new jobs were created, these were accompanied by additional costs for police, emergency services, road damage, and social services. In addition, increased rents, and a shortage of affordable housing accompanied the fracking boom. Unemployment rose after one county’s boom ended; in another county, unemployment stayed above the state average throughout.804

• March 27, 2014 – A report by researchers at Rand Corporation determined that each shale gas well in Pennsylvania causes between $5,400 and $10,000 in damage to state roads. The report did not calculate damage to local roads, which is also significant. Researchers used estimates of truck trips that are significantly below the number estimated for New York by the New York State Department of Environmental Conservation.805, 806

• February 15, 2014 – The *Los Angeles Times* detailed steep increases in crime that have accompanied fracking in parts of the Eagle Ford Shale in Texas, including sexual assaults and thefts.807

• February 14, 2014 – Pennsylvania landowners with fracking leases rallied in Bradford County against gas companies for precipitous drops in royalty payments.808

• December 20, 2013 – The National Association of Realtors’ *RealtorMag* summarized a growing body of research, including a University of Denver survey and a *Reuters* analysis, that shows threats property values from fracking and gas drilling.809

804 Multi-State Shale Research Collaborative. (2014, April 10). *Assessing the impacts of shale drilling county case studies* (Rep.). Retrieved from https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxtdWx0aXN0YXRlc2hhbGV8Z3g6NGU4MjlyNWU5ZjFhZjM4Yg

December 12, 2013 – A Reuters analysis discussed how oil and gas drilling has made some properties “unsellable” and researched the link between drilling and property value declines. The analysis highlighted a Duke University working paper that finds shale gas drilling near homes can decrease property values by an average of 16.7 percent if the house depends on well water.

December 10, 2013 – Pennsylvania’s Daily Review reported that more gas companies are shifting costs to leaseholders and that royalty payments are drastically shrinking. The story quoted Bradford County Commissioner Doug McLinko saying that some gas companies “are robbing our landowners” and that the problem of royalty payments being significantly reduced by deductions for post-production costs “is widespread throughout our county.”

November 30, 2013 – The New York Times reported striking increases in crime in Montana and North Dakota where the oil and gas boom is prevalent, as well as challenges faced by local residents from the influx of out-of-area workers and the accompanying costs. The New York Times reported, “It just feels like the modern-day Wild West,” said Sgt. Kylan Klauzer, an investigator in Dickinson, in western North Dakota. The Dickinson police handled 41 violent crimes last year, up from seven only five years ago.

November 21, 2013 – The Multi-State Shale Research Collaborative released a six-state collaborative report demonstrating that the oil and gas industry has greatly exaggerated the number of jobs created by drilling and fracking in shale formations. The report found that far from the industry’s claims of 31 direct jobs created per well, only four jobs are created for each well. It also demonstrated that almost all of the hundreds of thousands of “ancillary” jobs that the drilling industry claims are related to shale drilling existed before such drilling occurred. As Frank Mauro, Executive Director Emeritus of the Fiscal Policy Institute put it, “Industry supporters have exaggerated the jobs impact in order to minimize or avoid altogether taxation, regulation, and even careful examination of shale drilling.”

November 12, 2013 – The American Banker reported that the “Fracking Boom Gives Banks Mortgage Headaches,” with a number of financial institutions refusing to make

mortgages on land where oil and gas rights have been sold to an energy company. The article stated that the uniform New York state mortgage agreement used by Fannie Mae and Freddie Mac requires that homeowners not permit any hazardous materials to be used or located on their property. Fracking is therefore a problem because it is just such a hazardous activity with use of hazardous materials.814

- September 25, 2013 – A report found that fracking is linked to significant road damage, increased truck traffic, crime, and strain on municipal and social services. Data from the past ten years on the social costs of fracking including truck accidents, arrests, and higher rates of sexually transmitted diseases are all causes for alarm.815

- September 12, 2013 – In a feature titled “Pa. fracking boom goes bust,” The Philadelphia Inquirer presented data from the independent Keystone Research Center detailing “flat at best” job growth and declines in production and royalty payments.816

- August 22, 2013 – A University of Denver study in the Journal of Real Estate Literature found a 5 to 15 percent reduction in bid value for homes near gas drilling sites.817

- August 21, 2013 – The Atlantic Cities and MSN Money reported that fracking operations may be damaging property values and may impair mortgages or the ability to obtain property insurance.818, 819

- August 13, 2013 – A ProPublica investigative analysis found that Chesapeake Energy is coping with its financial difficulties in Pennsylvania by shifting costs to landowners who are now receiving drastically reduced royalty payments.820

- August 4, 2013 – In a survey of West Virginia landowners with shale wells on their property, more than half reported problems including damage to the land, decline in property values, truck traffic, and lack of compensation by the oil and gas company.821

- May 24, 2013 – Pennsylvania Department of Transportation Secretary Allen D. Buhiher and Pennsylvania State Police Commissioner Frank Pawlowski said that gas drilling has led to increases in truck traffic, traffic violations, crime, demand for social services, and the number of miles of roads that are in need of repairs. They noted that drilling companies that committed to repairing roads have not kept pace with the roads they damage. Commissioner Pawlowski reported that 56 percent of 194 trucks checked were over the legal weight limit and 50 percent were also cited for safety violations.

- May 4, 2013 – Pennsylvania’s Beaver County Times asked, “What boom?” in pointing to Keystone Research Center data showing that the number of jobs numbers created by shale gas extraction do not add up to what the gas industry claims, noting that unemployment has increased and the state actually fell to 49th in the nation for job creation.

- April 2, 2013 – The New York Times reported that manufacturing jobs resulting from an abundance of shale gas have not appeared. “The promised job gains, other than in the petrochemical industry, have been slow to materialize,” The New York Times reported. The article suggested that increased automation has made it unlikely that manufacturers will add many jobs.

- March 19, 2013 – The Wall Street Journal reported that the shale gas boom has not had a big impact on U.S. manufacturing because lower energy prices are only one factor in a company’s decision on where to locate factories, and not always the most important factor. “Cheap energy flowing from the U.S. shale-gas boom is often touted as a ‘game changer’ for manufacturing,” the Journal reported. “Despite the benefits of lower energy costs, however, the game hasn’t changed for most American manufacturers.”

- February 2013 – A peer-reviewed analysis of industry-funded and independent studies on the economics of fracking found that it is unlikely that fracking will lead to long-term economic prosperity for communities. The analysis noted that shale gas development brings a number of negative externalities including the potential for water, air, and land contamination; negative impacts on public health; wear and tear on roads and other

infrastructure; and costs to communities due to increased demand for services such as police, fire departments, emergency responders, and hospitals.

- November 16, 2012 – A Duke University study showed a drop in home values near fracking for properties that rely on groundwater.

- September 27, 2012 – The New York Times reported that the prospect of fracking has hindered home sales in the Catskills and raised concerns about drops in property values, according to real estate agents and would-be buyers.

- August 17, 2012 – A study by the state agencies, the Montana All Threat Intelligence Center and the North Dakota State and Local Intelligence Center, found that crime rose by 32 percent since 2005 in communities at the center of the oil and gas boom.

- October 30, 2011 – A comprehensive article in the New York State Bar Association Journal concluded that the risks inherent with fracking threaten mortgages.

- October 26, 2011 – The Associated Press reported that areas with significant fracking activity, including Pennsylvania, Wyoming North Dakota and Texas, are “seeing a sharp increase in drunken driving, bar fights and other hell-raising.”

- October 19, 2011 – A New York Times investigation found that fracking can create conflicts with mortgages, and that “bankers are concerned because many leases allow drillers to operate in ways that violate rules in landowners’ mortgages,” and further that “[f]earful of just such a possibility, some banks have become reluctant to grant mortgages on properties leased for gas drilling. At least eight local or national banks do not typically issue mortgages on such properties, lenders say.”

• September 7, 2011 – The NYS DEC estimated that 77 percent of the workforce on initial shale gas drilling projects would consist of transient workers from out of state. Not until the thirtieth year of shale gas development would 90 percent of the workforce be comprised of New York residents.833

• August 15, 2011 – The Pittsburgh Post-Gazette reported that increases in crime followed the Pennsylvania gas drilling boom, noting, for instance, that drunken driving arrests in Bradford County were up 60 percent, DUI arrests were up 50 percent in Towanda, and criminal sentencing was up 35 percent in 2010.834

• July 26, 2011 – A New York State Department of Transportation document estimated that fracking in New York could result in the need for road repairs and reconstruction costing $211 million to $378 million each year.835

• June 20, 2011 – A Keystone Research Center study found that the gas industry’s claim of 48,000 jobs created between 2007 and 2010 as a result of natural gas drilling in Pennsylvania is a far cry from the actual number of only 5,669 jobs—many of which were out-of-state hires.836

• May 9, 2011 – A study in the Journal of Town & City Management found that shale gas development can impose “significant short- and long-term costs” to local communities. The study noted that shale gas development creates a wide range of potential environmental hazards and stressors, all of which can adversely impact regional economies, including tourism and agriculture sectors.837

• November 30, 2010 – The Dallas Morning News featured a story, “Drilling Can Dig into Land Value,” reporting that the Wise County Central Appraisal District Appraisal Review Board found that a drilling company had caused an “extraordinary reduction” in property value, by 75 percent.838

833 New York State Department of Environmental Conservation. (2011). Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program, well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs (6-233, 234, Rep.).
November 28, 2010 – The Texas *Wise County Messenger* reported that some landowners near fracking operations experience excessive noise, exposure to diesel fumes, and problems with trespassing by workers.\(^{839}\)

Inflated estimates of oil and gas reserves and profitability

Industry estimates of oil and gas reserves and profitability of drilling have proven unreliable, casting serious doubts on the bright economic prospects the industry has painted for the public, media, and investors. Increasingly, well production has been short-lived, which has led companies drilling shale to reduce the value of their assets by billions of dollars, creating shortfalls that are largely filled through asset sales and increasing debt load. The ongoing fall in oil and gas prices means that interest payments are consuming revenue of many smaller companies, raising questions about who becomes the custodian of wells and infrastructure when companies abandon operations. In Alberta, Canada, newly abandoned wells dot the landscape, leaving the provincial government to close down and dismantle them—a task estimated to require decades of work. In the United States, more than 60 oil and gas companies declared bankruptcy in 2015-2016; the number of oil rigs has declined by 75 percent since 2014, and almost 70 percent of fracking equipment has been idled.

- July 7, 2016 – “Oil-field-services companies are depleted after slashing prices and laying off workers, and their slow recovery could crimp the energy industry’s overall ability to bounce back from the oil bust,” according to the *Wall Street Journal*. Almost 70 percent of fracking equipment in the United States has been idled, and 60 percent of field workers involved in fracking have been laid off. Halliburton alone has lain off over 28,500 workers, which is one third of its workforce. More than 70 oilfield services companies have filed for bankruptcy since the beginning of 2015.\(^{840}\)

- June 15, 2016 – Billions of dollars of proven reserves have become unproven this year, as “59 U.S. oil and gas companies deleted the equivalent of 9.2 billion barrels, more than 20 percent of their inventories,” according to *Bloomberg*. In 2009, the Securities and Exchange Commission (SEC) made it easier for the companies to include in their proven reserves undeveloped acreage and wells that wouldn’t be drilled for years on the grounds that “shale prospects are predictable across wide expanses.” Since then, the SEC has become more strict about inflated reserves estimates.\(^{841}\)

- May 16, 2016 – *CNN Money* reported on the two latest U.S. oil and gas bankruptcies: SandRidge Energy’s Chapter 11 filing was based on roughly $4 billion of debt and came the week after the biggest such bankruptcy to date—that of Linn Energy with more than

$10 billion in debt. There had been at least 29 U.S. oil and gas bankruptcies in 2016 at the date of the article’s publication, bringing the 2015-2016 total to at least 64. “The industry has historically been full of wildcatters and speculators. It’s not surprising we're going through this boom-and-bust cycle,” the article quoted the managing director at oil restructuring firm SOLIC Capital, George Koutsonicolis, as saying.

- May 9, 2016 – “The pace of oil patch bankruptcies is picking up,” a Forbes piece read, listing the 15 biggest such bankruptcies to date. “All told, 69 oil and gas producers with $34.3 billion in cumulative secured and unsecured debt have gone under.”

- March 25, 2016 – Oil and gas borrowers “feasted on what Bloomberg estimates was $237 billion of easy money without scrutinizing whether the loans could endure a drastic downturn,” according to a Washington Post piece focusing on one company, Swift Energy, which itself was $1.349 billion in debt and had entered bankruptcy. Despite having been cautious prior to the Texas fracking boom, “[a]s the company began to frack more often, the amount it spent on exploration and drilling skyrocketed by hundreds of millions of dollars.” Those expenses combined with global developments led to its failure, along with over 40 other oil and gas companies in 2015. “The consequences are far-reaching. The U.S. oil industry, having grown into a giant on par with Saudi Arabia’s, is shrinking, with the biggest collapse in investment in energy in 25 years. More than 140,000 have lost energy jobs. Banks are bracing for tens of billions of dollars of defaults, and economists and lawyers predict the financial wreckage will accelerate this year.”

- March 10, 2016 – Crude oil production is not falling as quickly as predicted, given the sharp decline in prices and the drop-off in new drilling and fracking operations. As reported by Reuters, this disconnect is due to refracking of older wells, along with other unconventional techniques such as “choking” and “lifting,” which can extend the productive lives of wells or otherwise capture more product from them.

- March 1, 2016 – An analysis of fracking trends in the journal Nature concluded that a European shale gas boom was unlikely due to disappointing early yields (Poland, Lithuania and Denmark), links to earthquakes (United Kingdom), and intense public opposition in densely populated areas throughout the continent.

- June 19, 2015 – A Bloomberg Business analysis of the 62 drilling companies in the Bloomberg Intelligence North America Independent Exploration and Production Index

found that the companies’ debt continued to be a major problem. For 27 of the 62 companies, interest payments were consuming more than 10 percent of revenue. Drillers’ debt rose to $235 billion at the end of the first quarter, a 16 percent increase over the year prior. Bloomberg Business expressed concern that shale drillers have “consistently spent money faster than they’ve made it, even when oil was $100 a barrel.” S&P assigned speculative, or junk, ratings to 45 of the 62 companies in Bloomberg’s index.

- April 7, 2015 – A Moody’s Investors Service analysis of Liquefied Natural Gas (LNG) prospects found that lower oil prices were causing suppliers to defer or cancel most proposed LNG projects. Moody’s found that this was due in part to the drop in international oil prices relative to U.S. natural gas prices, thus removing the economic advantage of U.S. LNG projects. Moody’s stated, “LNG is a capital-intensive infrastructure business prone to periodic construction cycles that lead to overcapacity, which we expect will continue for the rest of the decade.”

- March 20, 2015 – A study by the Energy Watch Group in Germany found that the costs of allowing fracking in Germany would outweigh the benefits, noting in part that natural gas trading in the United States has been declining since 2009. The study also noted the costs of infrastructure, environmental and health risks and pointed to the need to expand renewable energy.

- December 19, 2014 – An International Energy Agency (IEA) report projected that U.S. domestic oil supplies, dominated by fracking, face challenges, and oil output from shale formations output, will level off and decline in the early 2020s. IEA Chief Economist Fatih Birol said, “A well-supplied oil market in the short-term should not disguise the challenges that lie ahead.”

- August 29, 2014 – Andrew Nikiforuk, a Canadian energy analyst, reported on diminishing returns and the higher-cost, higher-risk nature of fossil fuel extraction by fracking. Nikiforuk wrote, “Most of the world’s oil and gas firms are now pursuing extreme hydrocarbons because the cheap and easy stuff is gone…. That means industry will spend more good money chasing poor quality resources. They will inefficiently mine

and frack ever larger land bases at higher environmental costs for lower energy returns.

July 29, 2014 – According to the U.S. Energy Information Administration, energy companies are incurring increasing debt and selling assets to continue drilling in shale. “Based on data compiled from quarterly reports, for the year ending March 31, 2014, cash from operations for 127 major oil and natural gas companies totaled $568 billion, and major uses of cash totaled $677 billion, a difference of almost $110 billion. This shortfall was filled through a $106 billion net increase in debt and $73 billion from sales of assets....”

July 2014 – Researchers at the Washington, DC-based Environmental Law Institute and Washington & Jefferson College in Pennsylvania collaborated to produce a report designed in part to help communities avoid the “boom and bust” cycles of extractive industries. Authors warned, “While resource extraction has long been regarded as an economic benefit, a body of academic literature suggests that long term growth based chiefly on resource extraction is rare.” Confounding factors include transience of the workforce, localized inflation, widening disparities in royalties and impact fee disbursement, commodity price volatility, and communities overspending on infrastructure.

June 19, 2014 – Energy analyst Deborah Lawrence Rogers outlined the spiraling debt and severe deterioration of the assets of five major shale gas drillers over the last five years. She concluded, “This is not sustainable. It could be argued that it is not even moral. It is a failed business model of epic proportion. While companies could make the argument at one time that this was a short term downtrend, that no longer holds water because this pattern is long term.”

April 10, 2014 – A report by a petroleum geologist and petroleum engineer concluded the 100-year supply of shale gas is a myth, distinguished between what is technically recoverable and economically recoverable shale gas, and asserted that at current prices, New York State has no economically recoverable shale gas.

• February 28, 2014 – Maria van der Hoeven, Executive Director of the IEA, said in an interview with The Christian Science Monitor that there is only a decade left in the U.S. shale oil and gas boom, noting that her agency’s analysis predicts that production will soon flatten out and, by 2025, begin to decline.857

• December 18, 2013 – A University of Texas study in Proceedings of the National Academy of Sciences found that fracking well production drops sharply with time, which undercuts the oil and gas industry’s economic projections.858 In an interview about the study with StatelImpact NPR in Texas, Tad Patzek, Chair of the Department of Petroleum and Geosystems Engineering at University of Texas at Austin, noted that fracking “also interferes now more and more with daily lives of people. Drilling is coming to your neighborhood, and most people abhor the thought of having somebody drilling a well in their neighborhood.”859

• August 18, 2013 – Bloomberg News reported that low gas prices and disappointing wells have led major companies to devalue oil and gas shale assets by billions of dollars.860

• October 21, 2012 – The New York Times reported that many gas drilling companies overproduced natural gas backed by creative financing and now “are committed to spending far more to produce gas than they can earn selling it.” “We are all losing our shirts today,” said Exxon CEO Rex Tillerson in the summer of 2012.861

• July 13, 2012 – The Wall Street Journal reported that ITG Investment Research, at the request of institutional investors, evaluated the reserves of Chesapeake Energy Corporation’s shale gas reserves in the Barnett and Haynesville formations and found them to be only 70 percent of estimates by Chesapeake’s engineering consultant for the company’s 2011 annual report. Chesapeake and its consultant defended their figures.862

• August 23, 2011 – The U.S. Geological Survey (USGS) cut the government’s estimates of natural gas in the Marcellus Shale from 410 trillion cubic feet to 84 trillion cubic feet, equivalent to a reduction from approximately 16 years of U.S. consumption at current levels of natural gas use, to approximately 3.3 years of consumption. The USGS’s

updated estimate was for natural gas that is technically recoverable, irrespective of economic considerations such as the price of natural gas or the cost of extracting it.863

- June 26–27, 2011 – As reported in two \textit{New York Times} stories, hundreds of emails, internal documents, and analyses of data from thousands of wells from drilling industry employees, combined with documents from federal energy officials, raised concerns that shale gas companies were overstating the amount of gas in their reserves and the profitability of their operations.864, 865, 866 The \textit{New York Times’} public editor criticized the stories, but offered no evidence that the major findings were wrong.867 The \textit{New York Times’} news editors publicly defended both stories against the public editor’s criticism.868, 869

Disclosure of serious risks to investors

\textit{A snapshot of the dangers posed by natural gas drilling and fracking can be found in the annual Forms 10-K that oil and natural gas companies are required to file with the U.S. Securities and Exchange Commission (SEC). The information so contained in these reports, which provide a comprehensive summary of a company’s financial performance, provides a window into the harms and risks of fracking that are otherwise shielded from view by “gag order” clauses in court settlements, non-disclosure agreements between industry and landowners, and trade secret claims in regards to the chemical ingredients of fracking fluid. In this, the Form 10-K can serve as an imperfect surrogate for right-to-know data.}

Federal law requires that companies offering stock to the public disclose in their Form 10-K, among other things, the “most significant factors that make the offering speculative or risky.”870 In a review of Forms 10-K spanning the past decade available on the SEC’s

870 See 17 C.F.R. § 229.503(c) (companies must disclose the “most significant” risks); 17 C.F.R. § 230.405 (“the term material, when used to qualify a requirement for the furnishing of information as to any subject, limits the information required to those matters to which there is a substantial likelihood that a reasonable investor would attach importance in determining whether to purchase the security registered”); 17 C.F.R. § 240.10b-5 (it is illegal
website, oil and natural gas companies have routinely warned of drilling’s serious risks. In the words of Exxon Mobil Corporation’s subsidiary XTO Energy, “our operations are subject to hazards and risks inherent in drilling”871; or in the language of Range Resources Corporation, “development and exploratory drilling and production activities are subject to many risks.”872

Such hazards and risks include leaks, spills, explosions, blowouts, environmental damage, property damage, injury, and death. Chesapeake Energy Corporation has stated that “horizontal and deep drilling activities involve greater risk of mechanical problems than vertical and shallow drilling operations.”873 Over the past 15 years, companies have combined horizontal drilling with hydraulic fracturing to tap natural gas and oil in shale formations.

The companies also routinely warn of inadequate insurance to cover drilling harms. According to XTO Energy, “we are not fully insured against all environmental risks, and no coverage is maintained with respect to any penalty or fine required to be paid by us.”874 Range Resources states that “we can provide no assurance that our coverage will adequately protect us against liability from all potential consequences, damages and losses.”875

Houston-based Noble Energy provides a representative example of the risks that at least several drilling companies include in their annual reports. Noble states:

Our operations are subject to hazards and risks inherent in the drilling, production and transportation of crude oil, natural gas and NGLs [natural gas liquids], including:

- injuries and/or deaths of employees, supplier personnel, or other individuals;
- pipeline ruptures and spills;
- fires, explosions, blowouts and well cratering;
- equipment malfunctions and/or mechanical failure on high-volume, high-impact wells;
- leaks or spills occurring during the transfer of hydrocarbons from an FPSO [floating production storage and offloading vessels] to an oil tanker;
- loss of product occurring as a result of transfer to a rail car or train derailments;
- formations with abnormal pressures and basin subsidence which could result in leakage or loss of access to hydrocarbons;
- release of pollutants;
- surface spillage of, or contamination of groundwater by, fluids used in operations;
- security breaches, cyber attacks, piracy, or terrorist acts;

871 XTO Energy Corp., Annual Report (Form 10-K) (Feb. 25, 2010) at 25.
872 Range Resources Corp., Annual Report (Form 10-K) (Feb. 24, 2015) at 22.
873 Chesapeake Energy Corp., Annual Report (Form 10-K) (Feb. 27, 2015) at 18.
874 XTO Energy Corp., Annual Report (Form 10-K) (Feb. 25, 2010) at 17.
• theft or vandalism of oilfield equipment and supplies, especially in areas of active
 onshore operations;
• hurricanes, cyclones, windstorms, or “superstorms,” which could affect our
 operations in areas such as the Gulf Coast, deepwater Gulf of Mexico, Marcellus
 Shale or Eastern Mediterranean;
• winter storms and snow which could affect our operations in the DJ Basin
 [Denver-Julesburg Basin in Colorado] or Marcellus Shale;
• extremely high temperatures, which could affect third party gathering and
 processing facilities in the DJ Basin;
• volcanoes which could affect our operations offshore Equatorial Guinea;
• flooding which could affect our operations in low-lying areas;
• harsh weather and rough seas offshore the Falkland Islands, which could limit
 certain exploration activities; and
• pandemics and epidemics, such as the Ebola virus, which is ongoing in certain
 regions of West Africa and may adversely affect our business operations through
 travel or other restrictions.
 Any of these can result in loss of hydrocarbons, environmental pollution and other
 damage to our properties or the properties of others.876

Noble has language similar to that found in other companies’ annual reports about
inadequate insurance and adds, “we do not have insurance for gradual pollu-

876

877

The risks identified by these oil and gas companies are not just hypothetical. Many, if not
all of these risks are reflected in the evidence compiled in other sections of this
Compendium.

Medical and scientific calls for more study and more transparency

With increasing urgency, groups of medical and other health professionals and scientists are
issuing calls for comprehensive, long-term study of the full range of the potential health and
ecosystem effects of drilling and fracking. These appeals underscore the accumulating
evidence of harm, point to the major knowledge gaps that remain, and denounce the
atmosphere of secrecy and intimidation that continues to impede the progress of scientific
inquiry. Health professionals and scientists in the United States and around the world
increasingly call for the suspension of unconventional gas and oil extraction activities in order
to limit, mitigate, or eliminate its serious, adverse public health hazards, including health
threats from climate change.

• July 7, 2016 –The UK health professional organization Medact released an updated
 assessment of the potential health impacts of shale fracking in England that confirm the
 findings of its 2015 report, Health and Fracking. The new report, Shale Gas Production

starting point for evaluation in future drinking water exposure studies or human health studies.

- November 24, 2015 – A Harvard University team identified a trend toward increasing chemical secrecy and less transparency by examining 96,000 chemical disclosure forms filed by fracking companies between March 2011 and April 2015. These forms were submitted to the Fracfocus website, a chemical disclosure portal for the fracking industry that operates on a voluntary basis but for which reporting is mandated in more than 20 states. Fracfocus is the largest public database on chemicals used in U.S. fracking operations. Companies involved in fracking withheld chemical data at significantly higher rates in 2015 (16.5 percent) as compared to 2011-2013 (11 percent). The research team also found that withholding drops by a factor of four when companies report aggregate data without attribution to the specific products in the fracking fluid. The authors called for state governments to retain authority in requiring disclosure of “product-specific ingredient lists.”

- August 7, 2015 – While acknowledging the “dramatic increase in the number of peer-reviewed published studies” on environmental and health impacts of fracking, Weill Cornell Medical College’s Dr. Madelon Finkel and co-author PSE Healthy Energy’s Jake Hays called for more well-designed longer-term epidemiologic studies to quantify the connections between fracking-related risk factors and health outcomes. Without such studies it is challenging to capture, for example, outcomes such as cancer that take many years to present. The authors described several important studies that are currently underway that will add to the body of knowledge in the future.

- June 9, 2015 – Information on individual exposures and local environmental conditions prior to the commencement of fracking in a given area is often “unavailable or hard to obtain. These and other data gaps have hindered the kind of large-scale epidemiological studies that can link exposures to actual health outcomes, with valid comparison groups,” wrote public health journalist David Tuller in the journal Health Affairs. In an interview with Michigan Radio, Tuller noted that, because well development happens quickly, there was generally a lack of pre-drilling baseline studies.

• April 17, 2015 – Using sophisticated Geographic Information Systems (GIS) tools to examine distribution of fracking wells compared to distribution of vulnerable populations, Clark University researchers found consistent evidence that, in the Pennsylvania Marcellus Shale region, census tracts with potential exposure to pollution from fracking wells contained “significantly higher” percentages of poor people. They also found clusters of vulnerable populations concentrated near drilling and fracking in all three states they studied: Pennsylvania (for poverty and elderly population), West Virginia (for poverty, elderly population, and education level) and Ohio (for children). Researchers also reported difficulty in accessing high quality and consistent unconventional well data in all three states, demonstrating an “urgent need” for common data collection and reporting. Another GIS-based study sought to begin to fill this gap in data on spatially distributed risks of fracking, identifying Pennsylvania populations at “very high” and “high” risk in over a dozen counties. The author called for more focus on those areas to understand the impacts of fracking.

• March 30, 2015 – The UK medical organization Medact published a report, Health & Fracking: The Impacts and Opportunity Costs, which concluded that fracking poses significant risks to public health and called for an immediate moratorium to allow time for a full and comprehensive health and environmental impact assessment to be completed. The report was supported by a letter published in the British Medical Journal calling for shale gas development to be put on hold, signed by the Climate and Health Council and over a dozen senior health professionals. The letter stated, “The arguments against fracking on public health and ecological grounds are overwhelming. There are clear grounds for adopting the precautionary principle and prohibiting fracking.”

• February 17, 2015 – Writing in the Canadian Medical Association Journal, a public health scientist and medical doctor briefly reviewed the human health risks of fracking documented to date and made the case for a health care worker role in insisting on improved understanding. They cited worker and community safety issues as the biggest short-term risks, but emphasized that more needs to be known “before health care providers can definitively respond to their patients’ and communities’ concerns…. Physicians may wish to advocate delaying new development activities until the potential health effects are better understood.”

• January 22, 2015 – The acting head of research at the Cancer Association of South Africa, Carl Albrecht, said that known carcinogenic chemicals used in fracking could lead to an

201
An epidemic of cancer in South Africa’s Karoo desert. As South Africa was poised to publish draft regulations, Albrecht said that the effect of fracking on human health was ignored.

- **January 19, 2015** – In an article that reviewed research and research gaps, a team of British and U.S. medical and scientific professionals urged the United Kingdom and other nations to engage in science before engaging in fracking. They warned that even strong regulations may not effectively address air pollution from fracking, and that “permanent, adverse environmental, climatic, and population health impacts” may exist in some cases.

- **December 17, 2014** – In an editorial, Rutgers University environmental exposure expert Paul J. Lioy (now deceased) highlighted fracking as an area in which accurate exposure monitoring and risk assessment did not yet exist. Lioy emphasized that the relevant research was compartmentalized and fragmented and that exposures and health outcomes around unconventional natural gas development need to be systematically addressed through “well-defined exposure studies in communities and workplaces.”

- **December 5, 2014** – A team of medical and scientific researchers, including from the Institute for Health and Environment at the State University of New York (SUNY) at Albany, reviewed the scientific evidence that both adult and early life—including prenatal—exposure to chemicals from fracking operations can result in adverse reproductive health and developmental effects. These include: endocrine-disrupting chemicals potentially increasing risk for reproductive problems, breast cancer, abnormal growth and developmental delays, and changes in immune function; benzene, toluene and xylene (BTX chemicals) increasing risk for impaired sperm quantity and quality in men and menstrual and fertility problems in women; and heavy metals increasing the risk of miscarriage and/or stillbirths. Potential exposures occur through both air and water. Based on their review, the authors concluded, “Taken together, there is an urgent need for the following: 1) biomonitoring of human, domestic and wild animals for these chemicals; and 2) systematic and comprehensive epidemiological studies to examine the potential for human harm.” Lead author Susan Nagel said in an accompanying interview, “We desperately need biomonitoring data from these people. What are people

actually exposed to? What are the blood levels of people living in these areas? What are the levels in the workers?"896

- November 12, 2014 – A team of Australian researchers reviewed the strength of evidence for environmental health impacts of fracking based on publications from 1995 to 2014. They noted that the rapid expansion of fracking had outstripped the pace of science and that most studies focused on short-term, rather than long-term, health. Hence, “very few studies examined health outcomes with longer latencies such as cancer or developmental outcomes.” Noting that no evidence exists to rule out health impacts, the team called for direct and clear public health assessments before projects are approved, longitudinal studies that include baseline data, and government and industry transparency.897

- September 15, 2014 – Researchers led by University of Rochester’s Environmental Health Sciences Center conducted interviews in New York, North Carolina, and Ohio to evaluate community health concerns about unconventional natural gas development. They identified many areas where more study is needed, including baseline measures of air quality, ongoing environmental monitoring, and health impact assessments. They noted that other areas where data are lacking involve the assessment of drilling and fracking impacts on vulnerable populations such as very young children, and the potential consequences of interactions between exposures resulting from shale gas extraction operations. Researchers suggested incorporating the input of potentially affected community members into the development of the research agenda.898

- July 21, 2014 – An independent assessment report by Scientists for Global Responsibility and the Chartered Institute of Environmental Health reviewed current evidence across a number of issues associated with shale gas extraction by hydraulic fracturing, including environmental and public health risks, drawing on academic research. Among the report’s conclusions: there are major shortcomings in regulatory oversight regarding local environmental and public health risks; there is a large potential for UK shale gas exploitation to undermine national and international efforts to tackle climate change; the water-intensive nature of the fracking process which could cause water shortages in many areas; the complete lack of evidence behind claims that shale gas exploitation will bring down UK energy bills; and concerns that it will impact negatively on UK energy security. Despite claims to the contrary, the report noted that evidence of local environmental contamination from shale gas exploitation is well reported in the scientific literature. It emphasizes that, “[t]here are widespread concerns over the lack of evidence on fracking-

related health impacts,” and that there is a lack of “substantive epidemiological study for populations exposed to shale gas extraction.”

- July 18, 2014 – A working group of the Environmental Health Sciences Core Centers, supported by the National Institute of Environmental Health Sciences, reviewed the available literature on the potential health impacts of fracking for natural gas. They concluded that further research is urgently needed. Needs identified included: monitoring of air and water quality over the entire lifetime of wells; further epidemiologic research addressing health outcomes and water quality; and research addressing whether air pollution associated with fracking increases the risk of pulmonary and cardiovascular disease. The working group advocated for the participation of potentially affected communities in all areas of research.

- July 12, 2014 – Eli Avila, Pennsylvania’s former Secretary of Health, said that health officials need to be proactive in protecting the public from the health effects of unconventional shale gas extraction. In 2011, funding was approved for a Pennsylvania public health registry to track drilling related complaints and address concerns, but was cut at the last minute. Speaking to the problem posed by the dearth of information, Avila asked, “How can you keep the public safe if you’re not collecting data?”

- June 30, 2014 – The immediate past chair of the Executive Committee of the Council on Environmental Health for the American Academy of Pediatrics, Jerome A. Paulson, MD, called for industry disclosure of all ingredients of fracking fluid; thorough study of all air contaminants released from drilling and fracking operations and their protected dispersal patterns; and study and disclosure of fracking-related water contamination and its mechanisms. In a letter to the Pennsylvania Department of Environmental Protection, Paulson said:

 In summary, neither the industry, nor government agencies, nor other researchers have ever documented that [unconventional gas extraction] can be performed in a manner that minimizes risks to human health. There is now some evidence that these risks that many have been concerned about for a number of years are real risks. There is also much data to indicate that there are a number of toxic chemicals used or derived from the process, known or plausible routes of

exposure of those chemicals to humans; and therefore, reason to place extreme limits on [unconventional gas extraction].

- June 20, 2014 – Highlighting preliminary studies in the United States that suggest an increased risk of adverse health problems among individuals living within ten miles of shale gas operations, a commentary in the British medical journal *The Lancet* called for a precautionary approach to gas drilling in the United Kingdom. According the commentary, “It may be irresponsible to consider any further fracking in the UK (exploratory or otherwise) until these prospective studies have been completed and the health impacts of fracking have been determined.”

- June 20, 2014 – Led by an occupational and environmental medicine physician, a Pennsylvania-based medical and environmental science research team documented “…the substantial concern about adverse health effects of [unconventional natural gas development] among Pennsylvania Marcellus Shale residents, and that these concerns may not be adequately represented in medical records.” The teams identified the continued need to pursue environmental, clinical, and epidemiological studies to better understand associations between fracking, medical outcomes, and residents’ ongoing concerns.

- June 17, 2014 – A discussion paper by the Nova Scotia Deputy Chief Medical Officer and a panel of experts identified potential economic benefits as well as public health concerns from unconventional oil and gas development. On the health impacts, they wrote, “uncertainties around long term environmental effects, particularly those related to climate change and its impact on the health of both current and future generations, are considerable and should inform government decision making.” The report noted potential dangers including contamination of groundwater, air pollution, surface spills, increased truck traffic, noise pollution, occupational health hazards, and the generation of greenhouse gases. It also noted that proximity of potential fracking sites to human habitation should give regulators pause and called for a health impact assessment and study of long-term impacts. Responding to the report, the Environmental Health Association of Nova Scotia applauded the go-slow approach and called for a 10-year moratorium on fracking.

• May 29, 2014 – In New York State, more than 250 medical organizations and health professionals released a letter detailing emerging trends in the data on fracking that show significant risk to public health, air quality, and water, as well as other impacts. With signatories including the American Academy of Pediatrics, District II, the American Lung Association in New York, Physicians for Social Responsibility, and many leading researchers examining the impacts of fracking, they wrote, “The totality of the science — which now encompasses hundreds of peer-reviewed studies and hundreds of additional reports and case examples—shows that permitting fracking in New York would pose significant threats to the air, water, health and safety of New Yorkers.”

• May 9, 2014 – In a peer-reviewed analysis, leading toxicologists outlined some of the potential harm and uncertainty relating to the toxicity of the chemical and physical agents associated with fracking, individually and in combination. While acknowledging the need for more research and greater involvement of toxicologists, they noted the potential for surface and groundwater contamination from fracking, growing concerns about air pollution particularly in the aggregate, and occupational exposures that pose a series of potential hazards to worker health.

• May 1, 2014 – A 292-page report from a panel of top Canadian scientists urged caution on fracking, noting that it poses “the possibility of major adverse impacts on people and ecosystems” and that significantly more study is necessary to understand the full extent of the risks and impacts. The Financial Post reported that the panel of experts “found significant uncertainty on the risks to the environment and human health, which include possible contamination of ground water as well as exposure to poorly understood combinations of chemicals.”

• April 30, 2014 – Medical professionals spoke out on the dearth of public health information collected and lack of long-term study five years into Pennsylvania’s fracking boom. Walter Tsou, MD, MPH, past president of the American Public Health Association

and former Health Commissioner of Philadelphia commented, “That kind of study from a rigorous scientific perspective has never been done.” Other experts added, “There has been more health research involving fracking in recent years, but every study seems to consider a different aspect, and … there is no coordination.”

- April 17, 2014 – In the preeminent British Medical Journal, authors of a commentary, including an endocrinologist and a professor of clinical public health, wrote, “Rigorous, quantitative epidemiological research is needed to assess the risks to public health, and data are just starting to emerge. As investigations of shale gas extraction in the US have continually suggested, assurances of safety are no proxy for adequate protection.”

- April 15, 2014 – The Canadian Medical Association Journal reported on the increasing legitimacy of concerns about fracking on health: “While scientists and area residents have been sounding the alarm about the health impacts of shale gas drilling for years, recent studies, a legal decision and public health advocates are bringing greater legitimacy to concerns.”

- March 3, 2014 – In the Medical Journal of Australia, researchers and a physician published a strongly worded statement, “Harms unknown: health uncertainties cast doubt on the role of unconventional gas in Australia’s energy future.” They cited knowledge to date on air, water, and soil pollution, and expressed concern about “environmental, social and psychological factors that have more indirect effects on health, and important social justice implications” yet to be understood. They wrote in summary:

 The uncertainties surrounding the health implications of unconventional gas, when considered together with doubts surrounding its greenhouse gas profile and cost, weigh heavily against proceeding with proposed future developments. While the health effects associated with fracturing chemicals have attracted considerable public attention, risks posed by wastewater, community disruption and the interaction between exposures are of also of concern.

- March 1, 2014 – In the prestigious British medical journal The Lancet, researchers summarized workshops and research about the health impacts of fracking, noting that the scientific study on the health impacts of fracking is “in its infancy.” Nevertheless, the existing evidence suggests, said these researchers, that health risks posed by fracking exceed those posed by conventional oil and gas wells due to the sheer number and

density of well pads being developed, their proximity to densely populated areas, and the need to transport and store large volumes of materials.

- February 24, 2014 – In a review of the health effects of unconventional natural gas extraction published in the journal *Environmental Science & Technology*, leading researchers identified a range of impacts and exposure pathways that can be detrimental to human health. Noting how fracking disrupts communities, the review states, “For communities near development and production sites the major stressors are air pollutants, ground and surface water contamination, truck traffic and noise pollution, accidents and malfunctions, and psychosocial stress associated with community change.” They concluded, “Overall, the current scientific literature suggests that there are both substantial public concerns and major uncertainties to address.”

- August 30, 2013 – A summary of a 2012 workshop by the Institute of Medicine Roundtable on Environmental Health Sciences, Research, and Medicine featured various experts who discussed health and environmental concerns about fracking and the need for more research. The report in summary of the workshop stated, “The governmental public health system, which retains primary responsibility for health, was not an early participant in discussions about shale gas extraction; thus public health is lacking critical information about environmental health impacts of these technologies and is limited in its ability to address concerns raised by regulators at the federal and state levels, communities, and workers employed in the shale gas extraction industry.”

- June 2013 – A group of three nursing professors published a cautionary review questioning the rollout of new shale-based energy practices at a time when, “anecdotal reports make clear that the removal of fossil fuels from the earth directly affects human health.” Although the results of longterm studies are not yet available, the authors point to emerging evidence for negative human and ecologic health effects of fracking. Furthermore, they continue, “sufficient evidence has been presented to the [American Nurses Association], the American Public Health Association, and the American Medical Association’s Resident and Fellow Section to result in a call for a moratorium on the issuance of new fracking permits nationally.” They urge nurses to contribute to keeping health issues “front and center as we address national energy needs and policies.”

- April 22, 2013 – In one of the first peer-reviewed nursing articles summarizing the known health and community risks of fracking, Professor Margaret Rafferty, Chair of the Department of Nursing at New York City College of Technology wrote, “Any initiation

or further expansion of unconventional gas drilling must be preceded by a comprehensive Health Impact Assessment (HIA).”

- May 10, 2011 – In the American Journal of Public Health, two medical experts cautioned that fracking “poses a threat to the environment and to the public's health. There is evidence that many of the chemicals used in fracking can damage the lungs, liver, kidneys, blood, and brain.” The authors urged that it would be prudent to invoke the precautionary principle in order to protect public health and the environment.

Conclusion

All together, findings to date from scientific, medical, and journalistic investigations combine to demonstrate that fracking poses significant threats to air, water, health, public safety, climate stability, seismic stability, community cohesion, and long-term economic vitality. Emerging data from a rapidly expanding body of evidence continue to reveal a plethora of recurring problems and harms that cannot be averted or cannot be sufficiently averted through regulatory frameworks. There is no evidence that fracking can operate without threatening public health directly or without imperiling climate stability upon which public health depends. In the words of investigative journalist Andrew Nikiforuk:

> Industry swore that its cracking rock technology was safe and proven, but science now tells a different story. Brute force combined with ignorance … has authored thousands of earthquakes … [and] called forth clouds of migrating methane…. The science is complicated but clear: cracking rock with fluids is a chaotic activity and no computer model can predict where those fractures will go. The regulatory record shows that they often go out of zone; extend into water; and rattle existing oil and gas wells, and these rattled wells are leaking more methane.

And in the words of a new commentary about fracking in the American Journal of Public Health:

> Mounting empirical evidence shows harm to the environment and to human health … and we have no idea what the long-term effects might be.... Ignoring the body of evidence, to us, is not a viable option anymore.
